ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 85-103

PHOTOGRAMMETRY
AND REMOTE SENSING

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Check for
updates

The potential of in-situ hyperspectral remote sensing for differentiating 12
banana genotypes grown in Uganda

Priyakant Sinha™*, Andrew Robson”, Derek Schneider®, Talip Kilic”, Harriet Kasidi Mugera®,
John Ilukor™, Jimmy Moses Tindamanyire

2 Applied Agricultural Remote Sensing Centre (AARSC), University of New England, Armidale 2351, NSW, Australia

bLivin,g Standards Measurement Study (LSMS), Development Data Group, The World Bank, Via Labicana 110, 00184 Rome, Italy

¢ National Banana Research Programme, National Agricultural Research Laboratories (NARL), Kawanda, P.O. Box 7065, Kampala, Uganda
4 CGIAR Standing Panel on Impact Assessment (SPIA), P.O. Box 24384, Naguru, Kampala, Uganda

€ Development Data Group, World Bank, 1818 H Street, N.W. Washington, DC 20433, USA

ARTICLE INFO ABSTRACT

Keywords: Bananas and plantains provide food and income for more than 50 million smallholder farmers in East and

Banana Central African (ECA) countries. However, banana productivity generally achieves less than optimal yield po-

Hyperspectral remote sensing tential (< 30%) in most regions, including Uganda. Numerous studies have been undertaken to identify the key

Prediction modelling challenges that smallholder banana growers face at different stages of the banana value chain, with one of the

:frr:;l;lt:l:;eigp;oducnvuy main constraints being a lack of policy-relevant agricultural data. The World Bank (WB) initiated a methodo-
logical survey design aimed at identifying the distribution of banana varieties across a number of key Ugandan
growing regions, at the individual household scale. To achieve this outcome a number of approaches including
ground-based surveys, DNA tissue collection of selected banana plants and remote sensing were evaluated. For
the remote sensing component, the set objectives were to develop statistical models from the hyperspectral
reflectance properties of individual leaves that could differentiate typical ECA banana varieties, as well as their
parentage (usage). The study also explored the potential of extrapolating the ground-based hyperspectral
measures to high-resolution WorldView-3 (WV3) satellite imagery, therefore creating the potential of mapping
the distribution of banana varieties at a regional scale. The DNA testing of 43 banana varieties propagated at the
National Banana Research Program site at National Agricultural Research Organization (NARO) research station
in Kampala, Uganda, identified 12 genetically different varieties. A canonical powered partial least square
(CPPLS) model developed from hyperspectral reflectance properties of the sampled banana leaves successfully
differentiated BLU, BOG, GON, GRO and KAY genotypes. The Random Forest (RF) algorithm was also evaluated
to determine if spectral bands coinciding with those provided by WV3 data could segregate banana varieties. The
results suggested that this was achievable and as such presents an opportunity to extrapolate the hyperspectral
classifications to broader areas of land. The ability to spectrally differentiate these five genotypes has merit as
they are not typical east African varieties. As such, identifying the distribution and density of these varieties
across Uganda provides vital information to the banana breeders of NARO of where their new varieties are being
disseminated too, data that has been previously difficult to obtain. Although the results from this pilot study
indicated that not all banana varieties could be spectrally differentiated, the methodology developed and the
positive results that were achieved do present remote sensing as a complimentary technology to the ongoing
surveying of banana and other crop types grown within Ugandan household farming systems.

1. Introduction investment decisions is somewhat difficult. The Food and Agriculture
Organization (FAO) has expended considerable effort deriving world-

The continued development of agricultural systems is essential for wide agricultural statistics on a range of crops which has proven in-
combating poverty and food security. However, establishing a baseline valuable to researchers and practitioners in the field of agriculture

of agricultural statistics to assist government policy making and (Atzberger, 2013; Carfagna and Gallego, 2005; FAO, 2017a,b).
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The Living Standards Measurement Study Integrated Surveys on Agri-
culture (LSMS-ISA) of the World Bank has been developing and im-
plementing innovative survey methods to generate policy-relevant
agricultural data in support of governments in Sub-Saharan Africa
(Christiaensen and Demery, 2017; Kosmowski et al., 2019). Whilst, the
collection of data in most cases is specifically focused on improving
agricultural productivity, the WB-LSMS, in collaboration with the
CGIAR (Consultative Group for International Agricultural Research)
Standing Panel on Impact Assessment (SPIA), has been supporting the
design, implementation and analysis of household survey data for crop
variety identification (Christiaensen and Demery, 2017; Lobell et al.,
2018). This methodology assesses the relative accuracy of subjective
data collection approaches that are typically part of household and farm
surveys in relation to the DNA fingerprinting of crop material sampled
from the farmers’ fields. The LSMS-ISA emphasizes the design and va-
lidation of innovative survey methods, through the use of technology
such as remote sensing for improving survey data quality, and the de-
velopment of analytical tools to facilitate the analysis of data collected.

Bananas and plantains (Musa spp.) are important economic re-
sources for rural farmers in Uganda with a total annual estimated
production of ~10MT (FAO, 2011; UBos, 2010). Banana production is
essential for both ongoing food and income security because of its all-
year-round fruiting and ability to grow in a wide range of environments
and farming systems (Tinzaara et al., 2018; Tripathi et al., 2007). In
Uganda, banana is used for food, beverages, snacks, livestock feed,
industrial spirits and for several crafts and medicinal use (Anyasi et al.,
2013). However, like any other East-Central African (ECA) country,
Uganda’s banana productivity and market potential within and outside
the region are grossly underutilised (Kiiza et al., 2004; Van Asten et al.,
2003). Few studies have highlighted the challenges and scopes for small
farm holdings in banana value chain (e.g., Kiiza et al., 2004; Nyombi,
2013; PARAM, 2015; Tinzaara et al.,, 2018). Carletto et al. (2015)
identified that the policy-relevant smallholder agricultural data was
inconsistent, confined to sectors or institution (lack of data sharing),
and methodologically weak. Thus, there was a need for a standard
methodological survey design to provide quality of smallholder agri-
culture data for effective decision-making. This includes the validation
of innovative survey methods such as from remotely sensing data.

Use of plant leaf-reflectance to predict plant parameters including
crop variety, bio-chemical and physiological status, etc. is well estab-
lished (Jacquemoud et al., 2009; Jay et al., 2017; Martinez-Martinez
et al., 2018; Shi et al., 2015; Silva-Perez et al., 2017). Spectral re-
flectance in the broad, multispectral visible/near-infrared portion of the
electromagnetic radiation (EMR) have been related to plant chlor-
ophyll, plant health or vigour and water content, while the Red-Edge
has been commonly related to photosynthesis and foliar nitrogen con-
tent (Féret et al., 2017; Jay et al., 2017; Pefiuelas and Filella, 1998;
Silva-Perez et al., 2017; Verrelst et al., 2015). Recently, the increased
availability of hyperspectral cameras and field spectrometers, offering
the full spectrum (i.e. 350-2500 nm) (NIR: 770-1300, SWIR1:
1300-1900 nm and SWIR2: 1900-2500 nm), have provided measures
of an increasing range of crop biophysical traits (Ajayi et al., 2016;
Duan et al., 2014; Martinez-Martinez et al., 2018; Mishra et al., 2017;
Sahoo et al., 2015). For example, leaf-level reflectance has been cor-
related with photosynthetic parameters for wheat, cotton, potato,
sunflower, common beans and maize (Duan et al., 2014; Martinez-
Martinez et al., 2018; Silva-Perez et al., 2017; Chivasa et al., 2019);
nitrogen content (Shi et al., 2015); and leaf dry mass (Wang et al.,
2010). Vijaya Kumar et al. (2005) used hyperspectral radiometer data
for evaluation of four varieties of castor beans (VP-1, 48-1, GCH-4, and
Aruna) towards their tolerance to drought, characterized by higher NIR
reflectance. Garriga et al. (2017) investigated non-invasively measure
wheat traits and differentiated their genotypes. In another study, Ajayi
et al. (2016) analysed spectral behaviour of 20 wheat genotypes of wide
genetic background in relation to crop growth parameters, leaf area
index (LAI) and yield, and found the MIR/SWIR regions to be the most
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sensitive. These studies indicate the potential of discriminating crop
variety via their spectral properties. The visible portions of the spec-
trum are sensitive to the colour of the foliage; the reflectance in the NIR
sensitive to plant structure; and the mid NIR to the presence, absence or
variation in the quantity of leaf constituents. The leaf constitutes such
as oil, fats, cellulose and lignins, all of which can be cultivar-specific. It
is important to note that local and environmental factors can sig-
nificantly affect cultivar discrimination, and that the studies on variety
discrimination are often conducted for crop types grown on similar
environmental and management conditions, i.e. controlled environ-
ments. Mishra et al. (2017) presented a review on hyperspectral ima-
ging of plants, including challenges and complexities related to external
and plant-related factors and the technical challenges in the assessment
of plant traits.

Hyperspectral sensors provide very high spectral resolution both in
terms of the spectral extent covered, and the number of narrow band
wavelengths available. As such these sensors are especially sensitive to
very small variations in plant varietal composition (structure, leaf
constituents, colour, etc.). The discrimination of crop varieties rely on
the processing and analysis techniques that are capable of isolating such
smaller physiological variations (predictees or response) through de-
termination of least collinear wavelengths (predictors) (Rapaport et al.,
2015; Suarez et al., 2016; Silva-Perez et al., 2017), and then classifi-
cation or regression analysis to predict biophysical properties in space
and time. Several machine learning (ML) algorithms such as Random
forests (RF) and Partial least squares regression (PLSR)) were found
powerful tools for such tasks (e.g., Chlingaryan et al., 2018; Fu et al.,
2019; Heckmann et al., 2017; Mountrakis et al., 2011; Schwieder et al.,
2014; Silva-Perez et al., 2017). These algorithms generate adaptive,
robust relationships and, with optimal experimental design and
training, are fast to apply. The RF models the relationship between
explanatory variables and response variables by a set of decision rules
(Breiman, 2001). The RF classifiers potentially resolve the overfitting
problem and have been used in crop parameter and type classifications
(Belgiu and Dragut, 2016; Crabbe et al., 2020; Fu et al., 2019; Zhao
et al., 2016). The use of RF is an advantage, especially in situation of
small sample size and its characteristics to produce a variable im-
portance ranking in the classification (e.g., Fletcher and Reddy, 2016;
Fletcher, 2016). This is particularly useful to user in selecting variables
to design simpler and effective models (Liaw and Wiener, 2002; Strobl
et al., 2008). Despite an increase in the use of ML algorithms for dif-
ferent applications, the techniques have some fundamental limitations
and require expert knowledge in parametrizations. Ali et al. (2015)
listed the advantages and shortcomings of some of these techniques.

The PLSR model has been used to estimate photosynthetic capacity
at the leaf level from leaf-clip reflectance spectra (Serbin et al., 2011;
Silva-Perez et al., 2017). The model effectively deals with large number,
multicollinear variables, where the number of explanatory variables is
greater than the number of observations (Wold et al., 2001). The PLSR
constructs predictive models to identify and extract the variables or
components that mostly explain the variability (covariance) of both Y
(response) and X (predictor) variables while employing a stopping rule
to find the optimal number of components (ONC). For each latent
variable, the regression coefficient is estimated through a cross vali-
dation approach. The ONC is determined by minimizing RMSE between
predicted and observed response variable (Esbensen et al., 2002; Mevik
and Wehrens, 2007; Suarez et al., 2016). The PLSR is commonly used
for the interrogation of large continuous datasets, such as hyperspectral
data, when determining those regions most sensitive to specific para-
metric variations (Barnes et al., 2017; Mevik and Wehrens, 2007) in-
cluding those related to crop variety (e.g., Heckmann et al., 2017; Silva-
Perez et al., 2017; Suarez et al., 2016). It also avoids the potential
overfitting problems typical with other predictive models (Hansen and
Schjoerring, 2003; Mevik and Wehrens, 2007). However, the perfor-
mance of PLSR was found inconsistent with different plant species,
regions, and growth environments (Fu et al., 2019). Indahl et al. (2009)
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proposed a new data compression method, a Canonical Partial Least
Square (CPLS), for estimating optimal latent variables when more than
one response variable is available. The latent variables are found by
combining PLS and canonical correlation analysis (CCA). The model
predicts information more effectively than ordinary PLS approaches as
it incorporates information from additional variables to improve pre-
dictions (Indahl et al., 2009). A canonical powered PLS (CPPLS) is an
extension to CPLS that incorporates additional responses, individual
weighting of observations and power methodology to further improve
the predictive performance of the model (Indahl et al., 2009; Liland and
Indahl, 2009). Numerous studies have identified the CPPLS approach as
being more effective in the prediction of crop biophysical properties
and yield from hyperspectral reflectance than the traditional PLS
method (e.g., @vergaard et al., 2013a,b; Suarez et al., 2017).

Previous remote sensing research on banana has included Rajkumar
et al. (2012) who evaluated a lab-based visible-NIR imaging technique
for banana maturity prediction and industrial sorting of banana fruit
quality based on the chlorophyll characteristic and PLSR; and Johansen
et al. (2009, 2014) who undertook satellite based mapping studies to
determine the location of individual banana plants in peri-urban re-
gions of Australia. However, there is presently, no prior reporting of
using hyperspectral reflectance data as an input into ML algorithms
such as CPPLS and RF for banana genotype discrimination. This re-
search aims to fill this information gap by developing statistical models
from the hyperspectral reflectance properties of banana leaves to dif-
ferentiate typical ECA banana varieties and their parentage (usage, old
or local and new or improved). The main hypothesis is that the geno-
type-related differences (e.g. leaf constituents and canopy architecture)
produce different spectral responses that can be detected with hyper-
spectral sensors. In a novel approach, this study also attempts to ex-
trapolate the in-situ measures of banana plants to the regional scale,
and explore the feasibility of pairing point source hyperspectral mea-
sures (leaf-level) collected with an ASD field spectrometer with high-
resolution satellite imagery WV3 (canopy-level).

2. Objectives

This study examines the potential of remote sensing for differ-
entiating banana varieties in Uganda and as such contribute vital in-
formation to the methodological survey experiment. The specific ob-
jectives are:

(a) Generation of hyperspectral calibration dataset for differentiating
banana genotypes commonly grown in the smallholder-based
agricultural systems of Uganda;

(b) Determining the relative accuracy of spectral prediction of banana
varieties based on DNA fingerprinting;

(c) Determining the potential of extrapolating varietal classifications of
individual banana plants achieved from on-ground hyperspectral
measures to 16-spectral bands of WV3 satellite imagery.

3. Materials and methods
3.1. Site selection

To determine if banana varieties could be spectrally differentiated, a
calibration set of 43 banana varieties were selected from the National
Banana Research Program site at National Agricultural Research
Organization (NARO) research station in Kampala, Uganda (Fig. 1). The
selection of banana varieties were based on information provided by
the NARO staff using variety names, types and morphological attri-
butes. The 43 selected banana varieties comprised of both Native or Old
varieties, which were commonly grown across the different Ugandan
regions, as well as those of introduced or improved varieties (New). The
term ‘Parentage’ is synonymously used for ‘Old/New’ varieties or
‘Usage’, all of them essentially meaning the same. The NARO research
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station presented a strong candidate for the development of a spectral
calibration dataset as all cultivars were grown in close proximity and
were managed by NARO staff. Therefore, the risk of varied abiotic and
biotic factors influencing the spectral responses including management,
soil type or moisture variability and crop age was minimized. In addi-
tion, for the establishment of a validation data set, spectral measure-
ments of banana plants were done from a number of varieties grown
across three Ugandan districts: Isingiro, Masaka and Mbarara (results
not presented here). The geographic coordinates of study site are be-
tween 32°30’E to 32°35’E longitude and 0°40’N to 0°45’N latitude. The
climate is tropical savanna, with the average annual temperature and
precipitation are 26 °C and 356 mm, respectively. Most of the rainfall
occurs during April-May and Oct-Nov months.

3.2. Field spectroscopy

Field sampling was conducted during the late January and early
February of 2018. To establish a spectral data set for each of the banana
varieties, the first fully extended leaf of 30 plants per banana variety
(where available) was selected and manually removed with a knife
(Fig. 2a). This leaf was identified to be optimal as it was considered to
be photosynthetically active, unlike the pale green cigar leaf (leaf de-
velopmental stage), and less likely to be influenced by disease, pest,
weather damage and senescence as displayed by the older leaves. Each
manually removed leaf was spectrally measured immediately after re-
moval to minimise the potential influences of desiccation and the
breaking down of internal leaf structures (Fig. 2b). The manual har-
vesting of leaves to undertake in situ measurements was found more
practical due to two main reasons: (a) with instrument in hand,
reaching out different parts of a leaf was difficult and dangerous due to
the height of the plants; and (b) as a large number of leaves were used
for sampling it was logistically more feasible to manually remove the
third leaves and assemble them in combined sample set for rapid
measurement, than traversing around the plantation with the equip-
ment. The spectral reflectance measures were undertaken with an ASD
FieldSpec 4 spectrometer Hi-Res (350-2500 nm) fitted with a Leaf clip
attachment with a sampling resolution of 1 nm. This attachment pro-
vides a target area of interest of 2 cm and as it creates its own light
source from a 4.25 V 4.5 Watt Halogen lamp (MR6), hence measures
were not subject to the influences of differing ambient light conditions
from cloud cover, dust, smoke etc. This was an important consideration
as varying levels of cloud cover; haze and dust were persistent
throughout the entirety of the field sampling campaign. An instrument
was set to internal averaging of 10 raw scans for a single measurement.
Preventive protocols such as uniform sensor-target distance, sampling
at lamina portion of leaf and not over veins and midrib, were taken to
avoid any abnormal spectral reflectance during the raw data collection.
The leaf sampling and scanning were time-consuming and for each
variety generally extended over many hours. Unlike seasonal influence
on leaf scale spectra (Wong and Gamon, 2015), the variation in pho-
tosynthetic process during the day of sampling was not considered to
influence the resultant spectra between the samples due to following
reasons — (a) any influence of this dynamic process may only occur in
certain wavelengths and not on the entire range — also all of the samples
will have same impacts irrespective of their varieties and parentage; (b)
the 1 nm spectral resolution of highly correlated bands may not vary
much due to this subtle change in spectral response; and (c) the de-
signed model may be robust enough to work on any type of spectra
irrespective of their time of collection. Overall, the spectral data col-
lected can be related to the parameters which are relatively stable
during the day and right after leaf cutting. The real time visual in-
spection of spectra was assessed during collection to ensure its integrity
and in case of any fault, was re-collected. The GPS location of each
spectroscopy measurement was recorded with a differential Trimble
dGPS as close as possible to the main stem of the banana plant to take a
measurement (Fig. 1).
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Fig. 1. Worldview 3 imagery (acquired 18 Feb 2018) of the NARO research station with the location of each individual banana plant spectrally measured.

For each leaf, five locations along the ‘top surface’ of each leaf blade
were spectrally measured (Fig. 3). For all leaves, the spectral measures
were performed along the adaxial side of leaf near the midrib in five
separate locations. The multiple measurement points minimized the
chance of sampling bias from non-representative variations in plant
constituents from pest or disease, even though visible locations of these
occurrences were avoided. Further, we were concerned about varia-
bility between many plants and not within a single leaf, thus random
scanning on leaves to account for in-leaf variability was not found ne-
cessary here. Each sample was provided a unique barcode, so that the
ASD spectral measures and DNA fingerprinting, could be matched. The
ASD field computer was also used to enter other site information in-
cluding plant age, number of tillers, tree density score, tree height, soil
characteristics, plant health score, plantation management level, leaf
number measured and parentage (usage).

3.3. DNA extraction and sequencing

As well as the physical identification and spectral measurements,
the tissue samples were also collected for each variety. These samples
were processed on site following strict protocol and then sent for DNA
extraction and sequencing. Genomic DNA (gDNA) was isolated from
banana leaf tissue using a modified CTAB method (Stewart Jr and Via,
1993). Approximately 50 mg of leaf dried using Silica gel was trans-
ferred into 2 mL Conical microtube containing a sterile stainless steel
shot and milled into powder using a Mini-BeadBeater-8 (Biospec Pro-
ducts) for 30 sec at 30 oscillations per second (OPS). To the sample,
800 pL of pre-warmed (65 °C) CTAB extraction buffer was added and
incubated at 65 °C for 30 min with occasional shaking. Chloroform
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extraction was performed by adding 800 pL of chloroform: iso-
amyalcohol (24:1, v:v), mixing thoroughly by vortexing, and then
centrifugation of the mixture at 18,000g for 5 min in an Eppendorf 5415
D centrifuge. The aqueous supernatant was then transferred to a fresh
2 mL tube. Another chloroform extraction was performed on the su-
pernatant and 2 pL of RNase A (1 mg/mL) was added to the resulting
supernatant followed by incubation at 37 °C for 1 h. The resulting su-
pernatant was transferred to a 1.5 mL Eppendorf tube. The gDNA was
then precipitated by addition of an equal volume of isopropanol. The
mixture was thoroughly mixed by inversion and then centrifuged at
18,000g for 10 min. The supernatant was then discarded and the pellet
washed by adding 1 mL of ice-cold 80% (v:v) ethanol followed by
centrifugation for 5 min at 18,000g. The supernatant was discarded and
pellet dried under vacuum for 10 min at room temperature. The pellet
was re-suspended overnight at 4 °C in 20 pL of nuclease free water.
Purity and concentration of the gDNA was then determined by spec-
trophotometry.

From the 43 banana varieties initially sampled, the DNA tissue
testing identified 12 varieties to be genetically different. These are also
called ‘Genotypes’. The two terms ‘variety’ and ‘genotype’ are used in
context but essentially meant the same (i.e., banana variety). The in-
field spectrometer readings for remaining verities were removed, and
spectra for 12 genotypes were used in further analysis.

3.4. Pre-processing

The pre-processing of hyperspectral data involved the removal of
outlier spectra and ‘noisy’ wavelengths from known regions of atmo-
spheric water absorption (1350-1420 nm, 1770-1965 nm and
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Fig. 2. The manual cutting of sample leaves from each plant (a), followed by the near immediate spectral measure with the ASD field spectrometer fitted with the leaf

clip (b).

Location of Leafclip
measurements taken along
each banana leaf.

Fig. 3. Location of the 5 hyperspectral measures taken along each sampled leaf
with an ASD field spectrometer fitted with a leaf clip.

2450-2500 nm) (Hennessy et al., 2020). Additional ‘noisy’ regions
below 450 nm were also removed. The spectra for each genotype was
plotted individually to allow the outliers to be identified. The Savitzky-
Golay smoothing filter (parameters: order = 2, length = 11 and no
derivative m = 0) was used to smooth any irregularities of the signal.
The resultant 1231 spectra (ASDgenotype) corresponding to the 12 gen-
otypes were further split into 620 and 611 samples representing the
‘Old’ and ‘New’ banana varieties, respectively (ASDparentage)- Each of the
parentage class contained 6 genotypes. This was done to simplify the
modelling and potentially increase the likelihood of achieving a suc-
cessful model that offered useful results for plant breeders, who wanted
to know the distribution and therefore adoption of new varieties.
Table 1 shows the banana varieties, their assigned bin number and
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Table 1
Banana varieties and their assigned bin number, parentage and sample size of
hyperspectral data used for modelling. (Please see Appendix A for variety code
details).

Variety Parentage Assigned Bin No of Calibration Validation
Code sample samples samples
spectra

BLU old Bin173 87 63 24

BOG old Binl75 117 87 30
FHI17 New Bin159 68 49 19
FH25 New Binl67 58 43 15

GRO old Bin225 87 58 29

GON old Bin219 69 50 19

KAY old Binl19 125 93 32

KM5 New Binl161 119 85 34

M2 New Bin191 127 92 35
NA31 New Bin187 109 81 28
NAR7 New Binl71 130 96 34

SUK old Bin43 135 100 35

Total 1231 897 334

sample size of hyperspectral data used for modelling. Figs. 4 and 5
respectively show mean reflectance spectra of 12-binned varieties, and
the mean reflectance of ‘Old’ and ‘New’ varieties within the 12 uniquely
assigned bins.

A separate ‘filtered’ set of reflectance spectra was produced to match
those wavelengths provided by the WV3 satellite (called WV3asp.geno-
tpe)- The 16 bands include : Coastal Blue (400-450 nm), Blue
(450-510 nm), green (510-580 nm), yellow (585-625 nm), red
(630-690 nm), RedEdge (705-745 nm), NIR1 (770-895 nm), NIR2
(860-1040 nm), SWIR1 (1195-1225 nm), SWIR2 (1550-1590 nm),
SWIR3 (1640-1680 nm), SWIR 4 (1710-1750 nm), SWIR5
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Fig. 4. Mean reflectance spectra of 12-binned banana varieties (ASDgenotype).
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Fig. 5. Mean reflectance of ‘Old’ and ‘New’ banana varieties within the 12 uniquely assigned bins (ASDparentage)-

(2145-2185 nm), SWIR6 (2185-2225 nm), SWIR7 (2235-2285 nm),
and SWIR 8 (2295-2365 nm) (Digital Globe, 2014). This was achieved
by convolving the field ASD reflectance spectra to the spectral resolu-
tion of WV3 sensor using the built in resampling functions in the ENVI
5.5 software. The WV3agp_genotyepe SPeCtra was further grouped as ba-
nana parentage to get WV3asp.parentage Spectra for ‘Old’ and ‘New’
varieties. The WV3 satellite offers the highest spectral (16-bands) and
spatial resolution (1.2 m Multispectral (MS) and 0.31 Pan Sharpened
(PS)) available from a satellite platform with a temporal resolution

of < 1 day. The platform is being more extensively used in research and
commercial applications (e.g., Fletcher and Reddy, 2016; Robson et al.,
2017). To map banana plantation in Queensland, Australia, Johansen
et al. (2009), determined pixel size of <2.5 m to be sufficient for ac-
curate identification of banana plantation row structure and object-
separation from other crops. Thus, the use of WV3 data in this study
was found appropriate for banana mapping at Uganda study sites.
However, use of WV3 data does incur additional cost to the industry.
Free to use satellite data, e.g., from Sentinel2, provide few spectral
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resolutions matching with WV3, but with a spatial resolution of 10 m,
do not have required high spatial resolution required for this applica-
tion.

3.5. Remote sensing data

It was hypothesized that if equivalent WV3asp._genotype SPectra ob-
tained from the ground based hyperspectral measurements could
achieve strong varietal segregation, then there would be greater con-
fidence in extrapolating those results to the data from a satellite plat-
form. A 16-bands WV3 image was acquired for this study, encom-
passing the NARO research station in Kampala (acquired on 18th
February 2018) (Supplementary Figure, SFig. 1). The timing of image
acquisition coincided with the field sampling providing both radio-
meter and WV3 data with similar plant age and environmental condi-
tions. The WV3 digital number (DN) was converted to surface re-
flectance using FLAASH algorithm in ENVI followed by the Dark object
Subtraction (DOS) to minimize atmospheric effects. However, the
imagery suffered from some haze, which partially degraded the image
quality and posed difficulty in identifying individual banana crowns at
1.2 m resolution. The WV3 multispectral imagery (MS) (8-bands) was
Pansharpened (PS) to generate PS image of 0.30 m spatial resolution,
which was used to delineate banana plant boundaries using object-
based approach suggested by Johansen et al. (2014) in eCognition
software. The SWIR 8-bands were resampled to 1.2 m to match with the
spatial resolution of MS bands, and then staked together to make 16-
bands imagery for further processing. The banana boundary layer was
superimposed on stacked WV3 data to extract the reflectance for 12-
gneotypes (WV3,efiectance), and used for banana classification. SFig. 2
shows the comparison of ASD and WV3 reflectance for few genotypes.

3.6. Derivation and evaluating of classification models

3.6.1. Canonical powered partial least squares (CPPLS) classification
algorithm

For analysis of full range reflectance spectra (ASDgenorpes and
ASDyparentage), the supervised canonical powered partial least squares
(CPPLS) classification algorithm was selected due to its feature ex-
traction and data inference abilities and that the analysis required was
qualitative i.e. Y variable was banana genotype. The model integrates
canonical correlation analysis and the parameterization of loading
weights optimized over a given interval, and has ability to extract
predictive information for the latent variables more effectively than
ordinary PLS approaches (Indahl et al., 2009; Mevik and Wehrens,
2007). The CPPLS algorithm fits PLSR model, where relation between
predictor matrix X (wavelenths) and response vector Y (genotypes) are
found thorough the latent variables (components) iteratively (Indahl
et al., 2009; Mahmood et al., 2011). The model compresses numerous
collinear variables into a few orthogonal components (PCs) which ex-
plain variance—covariance structures and optimize the explained power
of the response variables (Wold et al., 2001). For each latent variable,
the regression coefficient is estimated by a cross validation approach,
and the ONC is determined by minimizing RMSE between predicted and
observed response variable (Esbensen et al., 2002).

The CPPLS classification algorithm provided in the statistical
package R was used to analyse the reflectance spectra (Mevik and
Wehrens, 2007). R-Packages used included: ‘hyperspec’ for generating
hyperspectral objects and exploratory plotting for visual/manual out-
lier removal, ‘cppls.fit’ for CPPLS and ‘caret’ for data segregation
(Mevik and Wehrens, 2007). The ASDgenotpes and ASDparentage SPECtra
were used as input in CPPLS. The model was developed from pre-pro-
cessed spectra and not on derivative spectra. The derivative spectra are
commonly used to remove noise and should be done with caution due
to a high correlation between discrimination capabilities and band-
width (Schmidt and Skidmore, 2004). Studies have shown that PLSR
models that utilizes the full spectrum can predict photosynthetic

91

ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 85-103

capacity through time (Barnes et al., 2017), while noise removal de-
monstrated negative effects on the subsequent statistical analysis of
spectral characteristics (Vaiphasa, 2006). Since, it was hypothesized
that each banana variety would provide a unique spectral signature; it
was unknown how plant age, location, management practice, etc.
would influence this. Thus, analysis was done on pre-processed spectra
to capture a subtle change in banana variety spectral reflectance. This
analysis determined whether the hyperspectral reflectance data could
statistically differentiate each banana genotype (including old and new)
as well as indicate how accurately the derived spectral models could
predict the genotypes and parentage of samples not included in the
calibration set. To achieve this, the CPPLS model was built by randomly
splitting the response variable into two sets: ~75% of dataset to cali-
brate (train) the model and remaining ~25% to validate the model’s
prediction accuracy. The CPPLS was initiated with a large number of
PCs (40) to inspect the model fit by plotting, extracting and summar-
ising model components (Mevik and Wehrens, 2007). The model was
calibrated by k-fold cross-validation (k = 10) to evaluate the root mean
square error of prediction (RMSEP) as a function of the number of
components from 1 until ONC. The RMSE between the actual and
predicted values calculated over all cross-validation calibrations. The
best calibration equation and the number of latent variables were se-
lected based on a low RMSEP calculated as shown in Eq. (1) (Esbensen
et al., 2002).

12 0 -y
RMSEP = ,| ——M8M
\ n 1)

The model was then validated on the test set and its quality was
evaluated with the standard error of prediction corrected of the bias
(SEPc) calculated as shown in Eq. (2) (Esbensen et al., 2002).
sgpe = | 207 74~ Bias?

\ n-1 )
where n is the number of sampling of test set, ), the actual value of the
sampling i and y,"the predicted value for the sampling i. The bias is the
mean value of the difference between actual and predicted values.
Following completion of the calibration, the model was validated using
prediction (validation) dataset to determine the accuracy of prediction.

The overall classification performance was also expressed in terms
of sensitivity and specificity. These are statistical measures of the model
performance of a binary classification according to the confusion matrix
which classifies selection decisions as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) (Ballabio and
Consonni, 2013). ‘Sensitivity’ measures the proportion of actual posi-
tives that are correctly identified as positive (i.e., percentage of each
genotype which are correctly identified as belonging to true genotype),
while ‘Specificity’ measures the proportion of negatives that are cor-
rectly identified (i.e., percentage of each genotype correctly identified
as not belonging to other type). These are computed as:

Sensitivity = _IP
" TP+ FN 3
TN
Specificity = ———
peclfielty = o Fp )

Here, TP and TN are the number of instances where a class of in-
terest are correctly classified as well as correctly classified as not being
observed, respectively. FN is the number of instances where a class is
visually observed but is incorrectly classified as some other class, while
FP is the number of instances where a class is incorrectly classified as
the class of interest.

3.6.2. Random forest (RF) based classification

The RF classification was performed on WV3asp.genotype and
WV3asp-parentage SPectra (ASD spectra resampled to 16-bands matching
those of the WV3 satellite bands). The WV3asp.genotype SPectra was split
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into 3:1 ratio, where 75% of spectra used to train and build RF model
(calibration), which also provided a general prediction accuracy for
each behavior. The remaining 25% was used to validate the model’s
prediction accuracy. The RF is an ensemble classifier that generates
multiple decision trees from a randomly selected subset of training
samples and variables (Breiman, 2001). In recent years, the classifier
has gained popularity due to the accuracy of its classifications. The
CPPLS algorithm was not used in this case because it is more suitable in
reducing the large number of measured collinear spectral variables to a
few non-correlated latent variables. The variable importance ranking
(VIR) in RF was performed to systematically assess the usefulness and
identification of most important WV3 bands for discriminating banana
genotype. The R libraries ‘randomForest’ (Liaw and Wiener, 2002) and
‘Caret’ (Classification and Regression Training) were used for RF
modelling. The VIR of WV3 bands was determined based on ‘Gini
index’, which is used to measure the error across the RF ensemble of
trees (Breiman, 2001). The process was repeated for WV3gsp_parentage
spectra.

Initially, a RF model was developed with default parameters for
‘mtry’ = 7 (the number of variables tried at each split, which is ap-
proximately equal to the square root of the number of variables for
classification) and ‘ntree’ = 500 (the number of trees to grow) (Belgiu
and Dragut, 2016). The optimization of two parameters was done
through a ‘random search’ strategy within a given range of ‘mtry’ and
‘ntree’. The 10-fold cross-validation with 3 repeats, were used to limit
and reduce overfitting on the training set (Schratz et al., 2019). A graph
of model accuracy with different parameters are shown in the SFig. 3.
The optimal ‘mtry’ = 6 and ‘ntree’ = 2000 were used for genotype
classification; and 4 and 1500, respectively, for parentage classification.
A confusion matrix was computed, from which the accuracy was cal-
culated using the following equations:

Accuracy = (TP + TN) / (TP+FP + TN+FN) 5)

The RF model was also built on WV3,cfiectance that were extracted for
12 genotypes (Section 2.5). The prediction accuracy for each genotype
and VIR of WV3 bands were compared with those from WV3asp_genotype
RF modeling outputs to determine if similar results can be obtained
from canopy-level reflectance from the satellite platforms.

4. Results
4.1. CPPLS model calibration

4.1.1. Genotype

The explanatory analysis results from the PCA applied to full range
hyperspectral dataset (ASDgenotype) Produced a six PC model that ex-
plained > 99% of data variance. However, the score plot of first two
PCs did not show strong clustering for all genotypes (SFig. 4). The in-
itial CPPLS model fit with large number of 40 PCs explained a max-
imum of 72.7% of data variance, out of which first 12 PCs explained
69% of data variance, while the remaining PCs contributed only ~4%
mostly as noise (SFig. 5). Fig. 6 shows the RMSEP plots as a function of
the number of PCs, which demonstrated increasing prediction accuracy
with the model complexity as the RMSEP values decreased with in-
creasing number of PCs.

Utilizing virtually all of the variance observed in the dataset in-
dicated over parameterization of the model and the subsequent reduced
performance with new dataset. 12 PCs was determined as optimal as
the RMSEP values did not greatly improve with increasing number of
PCs (Fig. 6). The RMSEP plots for each genotype suggested that the
prediction accuracy is variable and required a complex model. With 12
PCs an overall accuracy of 78% was achieved.

Fig. 7 shows the random split of ASDgenotyepe SPectra for each gen-
otype; 75% for calibration and development of CPPLS model from 12
PCs, and 25% for validation of model to determine model’s perfor-
mance and accuracy. Both calibration and validation datasets showed a
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high ‘goodness of fit’ for all genotypes indicating better prediction from
the two datasets. The proportions of genotypes sampled were identical
between training and testing datasets as all of the samples were within
the 1:1 line (SFig. 6). The ‘pairwise plot’ of score values for first 10 PCs
shown in Fig. 8 explained the pattern, groupings and outliers in the 12-
binned spectra (ASDgenotyepe) @and the experimental design of data. The
PC1 (7.44%), PC2 (9.59%), PC4 (22.14%), PC5 (19.65%) and PC9
(2.19%) explained relatively higher amount of X-variance (wave-
lengths) in genotype predictions.

The loadings plots (regression coefficients) of the PC4 and PC5
(highest data variance) show the contribution of specific wavelength
regions in genotype separation (Fig. 9). The plots indicated the model’s
complexity as spectral peaks varied between the components and al-
gebraic expressions (positive and negative loadings). Thus, determina-
tion of a specific wavelength contribution based on any one component
was difficult. The 12 PCs regression coefficient was difficult to interpret
and hence plots of PC4 and PC5 were used to find the position of
spectral peaks or profile pattern. The model considered all of these
variabilities to deal with the complexities of spectrally similar banana
varieties.

4.1.2. Parentage

The parentage of the 12-binned banana varieties is given in Table 1.
The analysis ASDparentage initially with 40 PCs CPPLS model fit for
parentage classification indicated the first 7 PCs explained ~99% of
data variance. The RMSEP plots for ‘New’ and ‘Old’ varieties were found
similar (SFig. 7), and together required a complex model to attain a
maximum accuracy of 0.81 with 40 PCs (Fig. 10). However, as not
much data variance was explained by higher PCs, the gradual decrease
in RMSEP indicating change of overfitting of model (Fig. 10a). Thus, 7
PCs were found optimal and used to build the CPPLS model for par-
entage prediction.

The ‘pairwise plot’ of score values for first 7 PCs is shown in
Fig. 10b, indicating PC1, PC2 & PC3 contributing most of the data
variances (> 82%). The predictions plots of ‘New’ and ‘Old’ varieties
(SFig. 8) show significant overlap between the two samples, showing
spectral similarities between the two. The plot of regression coefficients
in Fig. 11 indicated the model’s complexity where the spectral peaks
varied between the components (positions and algebraic expressions).
The spectral bands that produced the highest significance in the spec-
tral models where Green, Red, RE, and few NIR and SWIR bands.

4.2. Model validation and prediction accuracy

The analysis of model performance on validation data demonstrated
that the prediction accuracy increased with the model complexity for
12-binned varieties and also for the parentage (i.e., with the number of
PCs) (Fig. 12a and b). With the optimal number of PCs, producing
average prediction accuracies of 60% and 64%, respectively, for gen-
otype and parentage classifications. For 12-binned genotypes, BLU and
GON produced 80% of prediction accuracy, followed by NAR7 and KAY
with ~70% of accuracy. For parentage, the accuracy of ‘New’ variety
was slightly higher than the ‘Old’ variety.

The decision matrix in the Table 2 represents the classification ac-
curacy for each genotype expressed as user accuracy (UA), producer
accuracy (PA) and overall accuracy (OA). The OA of 64.2% suggests an
above average performance of the model in general. The higher PA’s
(> 76%) and UA’s (> 64%) for BLU, GON, NAR7 and GRO suggesting
their correct identifications in both classifications and also in the field,
in most occasions. KAY has shown marginally low PA (71.0%) and UA
(57.9%) due to misclassification of samples from other types. The re-
maining genotypes showed spectral intermixing, particularly between
FH17, KM5, FH25, and BOG, resulting in poor classification accuracies.

These findings were further assessed through the sensitivity and
specificity analysis for the prediction of genotypes from the validation
datasets (Table 3). In general, the higher specificity (=93%) indicated



P. Sinha, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 85-103
© * © 40PCs
~ ' ® 12PCs
o ° H
. z
. ‘
S .
o . '
3 = :
3 H
s .
o
2 8§ *o
[ o 't o
@ °
& °
e %
8
o & %o,
g °© %o
°
°
%o
w °
- %o
o
%
°
© %o
S B T T T T
1 4
(a) 0 0 20 30 0
Number of Principle Components
FHI17 KM5 FH25
o § - g :
7 & 4 ®
w o
& N -
s 3 8 ]
T T T T T T T o T T T T T T T o T T T T T T T
2 4 6 -] 10 12 0 2 4 6 8 10 12 4 6 -] 10 12
NAR7 BLU BOG
8 4 i 8 -
o
" 3 :
0 &4 T S
= © § 4 g
14 - ° .
§ 4 & g
9 T T T T T T il T T T T T T o T T T T T T T
0 2 4 6 g 10 12 0 2 4 6 8 10 12 0 2 4 6 -] 10 12
GRO GON SUK
£ ) 2
o 8 s ]
- e -
g e %]
o s o
§ 2 | g -
e 5 T T T T T T o T T T T T T T @ =¥ T T T T T T
0 2 4 6 g 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
NA31 KAY M2
g & 4 e
) © o
& 4 e ]
e el § 7
:' _ - -
° & - 8§ 4
g o o
P | T T T T T T T T T T T T T T T T T T T T

o
[N)
-~
@
©
=
s

(b)

(-]

2 ¢« 6 8 10 12
number of components

o
~
-
>
@
=3
)

Fig. 6. Optimization of number of PCs against RMSEP as a measure of model prediction performance for genotype (a). The RMSEP plots for each genotype showing

variable prediction accuracy with 12 PCs (b).

that the model performed very well in differentiating one genotype
from the other. However, the relatively lower sensitivity for few gen-
otypes (e.g., FHI17, KM5, FH25) indicated that the model did not
successfully predict these as true variety (i.e., reliably ruling out of a
genotype classified as a particular variety). Higher sensitivity values for
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BLU, GON, NAR7 and GRO (> 75%), and to some extent for KAY (71%)
showed greater reliability of these genotypes when classified. These
parameters suggested that the current model may not be very accurate
in all banana genotype identification, except for few, but can be used to
reject genotypes that do not belong to a true class. This is important for
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this study as a positive result with high specificity (high probability of
true classification) indicates a correct classification, rather than a
misclassification (low type I error rate) (Ballabio and Consonni, 2013).
Thus, the higher accuracy (> 89%) is achieved mainly because of the
true negative predictions (NPV = TN/ (TN + FN)) for all genotypes.
With the current datasets the classifications of genotypes such as BLU,
GON, NAR7, GRO and KAY (=91% accuracy) are encouraging, al-
though further validation over more samples is recommended.

4.3. Extrapolating the hyperspectral results to the WV3 satellite data
bandwidths

To determine if the accuracies for varietal segregation achieved
from the full hyperspectral data set could be extended to the WV3 sa-
tellite wavelengths, a sub-set of spectral bands matching those of WV3
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wavelengths (WVagp.genotypes and WV3agp.parentage) Were undertaken for
further analysis. The RF algorithm was used to determine the classifi-
cation accuracies for genotypes and parentage.

4.3.1. Genotype

Table 4 shows the RF classification accuracies for 12-binned geno-
types. The mean of model and prediction accuracies were 44.8% and
52.8%, respectively. Genotypes such as BLU and BOG, produced higher
predictions accuracies (=70%), followed by GON, GRO and KM5
(> 61%). The prediction accuracies for remaining genotypes were re-
latively low, with NA31 being the lowest (32.2%). From both full range
hyperspectral data in CPPLS and RF classifications of spectra of WV3
wavelengths, the genotypes such as BLU, GON and GRO produced
higher prediction accuracies. The results were found in consistent with
other similar studies (e.g., Fletcher and Reddy, 2016; Fletcher, 2016).



P. Sinha, et al.

ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 85-103

FHI17 KM5 FH25
- Ii 7 ‘ o~ )
= |0 a 8 ]! F S 4
SHY N 31 e ey i A
1 i o ] RS
o 4-‘“]\,/] A A prasry A \‘("L'll' J m//\u/\/:\\wc—f'/ - M 4 vp"‘\- -’Ji\:‘c—-\
757y 7 ¥ LA oy y \I LA o~ 4 \!
3 7 ASAR | 1% g
& - AN = ¥ o
l.? T
T T T T T T T T T T T T T T T
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
‘g NAR7 BLU BOG
2 - -
% N i 7 e 1
U g 3N, " -
O 8 . 4} |!\..\-_/Y“ "‘Y\a' \‘N\ /v-’k). 8 R A Y _’“ S 1_..-.’\ lo > \‘_ '_!.;'\ 8 =1 )
S 1YW R WY T 0w S 1ML A e P
(=} 1 ¢ ",l v 4 0 .‘.l b A W V -\
» 3 I H = I H o |
@ g { g1 ! o
o o [! = =
’6) T T T T T ¥ T T T T T C-) T T T T T
o 500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
GRO GON SUK
[se]
o
s, -
215 A ' A :
27 4 r.ll\//I A 8 - Wil A /:’\1;‘/ \{/‘«"j °
=2 W U
s’ \\u o w V \( \ ° s \/ o
o < 8
S S - e
q T T T T T O' T T T T T
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
NA31 KAY M2
. g o ¥
- .::|‘ q ¢ J o - ,::“
8 | ullart N AN A g :7 A , S 1w 5 e N /\ e A
=3 v i P V [ i T S b g A 3 . S b L% (VAR SV at ON
° 1 D Y . P= I S S A YUY OO ° A i ) ¢
1 5\ NN T n T S | ] v
o ' N wh g e X = I o
8 _ u | o - 1 ; i »
d Y = M (=T
e | S 4 ol g ¢
T T T T T o T T T T T 8 T T T T T
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
Wavelength (nm
— PG4 gth (nm)
----- PCS5

Fig. 9. Regression coefficients of PC4 and PC5 to explain the contribution of wavelengths in genotype separation.

However, the accuracies in this study were relatively low due to use of
spectra of banana genotypes with nearly similar characteristics; whilst
others classified two different types of vegetation.

The classification of the remaining genotypes NAR7 and KAY pro-
duced higher sensitivities (> 0.71) (i.e., measure to predict true posi-
tive) in the CPPLS; but their RF prediction accuracies were relatively
poor. This result indicates that these genotypes may be differentiated by
using only the wavelengths that corresponded with WV3. Whilst, BOG
and KM5 had higher accuracies in RF classifications as compared to
CPPLS modelling, thereby indicating the usefulness WV3 wavelengths
in their spectral separation. Overall, the results from two models sug-
gested BLU, GON and GRO, and to some extent, BOG and KM5 geno-
types are spectrally distinguishable from both on-ground hyperspectral
measurements and from the 16 spectral wavelengths that correspond to
the WV3 satellite. These varieties pose as strong candidates for classi-
fications from WV3 satellite data. This is a major outcome of this re-
search. Further research is required to determine if similar outcomes
can be achieved across other regions in Uganda.

Fig. 13a illustrates the variable importance rankings (VIR) of WV3
spectral bands (y-axis) expressed as Gini Index (x-axis) in genotypes
classification. The ranking is in top-to-bottom as most- to least-im-
portant. The RedEdge band was found most important to the model.

The spectral bands Blue, Green, SWIR8, and SWIR1 were found of equal
importance, followed by SWIR1 and NIR2, as these bands could further
decrease in Gini index to 60. The SWIR5 band was found to be of the
lowest importance. The top ranked variables resulted in nodes with
higher purity with a higher decrease in Gini coefficient, with an overall
difference of ~40 found between top and bottom ranked variables.

4.3.2. Parentage

Table 5 shows the confusion matrix for RF classification accuracies
for banana parentage from the resampled spectra to WV3 bands. The
overall prediction accuracies achieved was > 68%. The majority of
samples were correctly classified as ‘New’ (TP = 113) and as an ‘Old’
(TN = 116), FN = 52 indicates the number of instances ‘New’ was
visually observed but was incorrectly classified as ‘Old’, while FP = 53
indicates the number of instances when ‘Old’ was incorrectly classified
as ‘New’. The terms ‘Condition Positive’ implies the total number of re-
ference samples for ‘New’ (TP + FN), and ‘Condition Negative’ for ‘Old’
variety (TN + FP). Thus, the ‘Predictive Condition Positive’ of ‘New’ is
equal to TP and FP respectively, when the number of samples in ‘New’
is correctly classified as ‘New’, and number of samples in ‘Old’ are
misclassified as ‘New’. Similar interpretation can be made for ‘Pre-
dictive Condition Negative’.
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Fig. 13b shows the VIR of WV3 bands for RF classification for ba-
nana parentage. The Green, RedEdge and NIR2 bands have shown
higher contributions to the homogeneity of the nodes and leaves in the
resulting RF. Overall, all of visible and NIR bands were considered
important as compared to SWIR bands. This result was found different
from genotype classifications, where wavelengths in all part of the
spectrum, were found crucial in RF classification.

4.4. RF classification of WV3 surface reflectance for genotype

The mean ASD hyperspectral and WV3 satellite reflectance ex-
tracted for BLU, BOG, GON, GRO and KAY genotypes are shown in
SFig. 2. These varieties have shown higher predictions from the RF and
CPPLS models and hence were used for the comparison. The major
differences between the two reflectance measures were observed in the
visible-NIR regions (Bands 2-8) and also in three SWIR regions (SWIR1,
3-4). The higher WV3 reflectance in the visible bands could be
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attributed to high back-scattering of electromagnetic radiation in
shorter wavelengths from atmospheric haze (Kaufman, 1993). Table 6
shows the RF prediction accuracy for each genotypes, and Fig. 14 shows
the most important WV3 bands (satellite) for discriminating banana
genotype in this case.

5. Discussion

This novel study explored the use of hyperspectral reflectance
measurements of banana leaves as a means of differentiating variety
and parental origin. The study also evaluated the accuracies of extra-
polating hyperspectral ground based reflectance measurements of ba-
nana plants to the Worldview-3.satellite imagery. Whilst some previous
research has extrapolated leaf-level hyperspectral measurements of
different vegetation types to satellite spectral bands (Fletcher and
Reddy, 2016; Fletcher, 2016) these studies compared the spectral be-
haviour of two different vegetation types (soybean with pigweed), and
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not between the genotypes and did not validate the accuracies from the
actual satellite based measurements. The research presented in this
study addresses some of these research gaps.

The CPPLS model was found appropriate for the analysis of the
hyperspectral reflectance measures due to its feature extraction and
data inference abilities, and suitabilty for analysing categorical data
(banana genotypes) (e.g., @vergaard et al.,, 2013a,b; Suarez et al.,
2017). Using leaf-level hyperspectral reflectance data, the CPPLS al-
gorithm successfully discriminated banana genotypes BLU and GON
(prediction accuracy of 80%), NAR7 and KAY (70%), and for GRO and

SUK genotypes (> 60%). Additionally the CPPLS modelling
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successfully categorised ‘New’ and ‘Old’ varieties (prediction accuracies
of 65% and 63%, respectively). These results were consistent with other
similar studies to predict crop biophysical properties and yield from
hyperspectral reflectance (Meacham-Hensold et al., 2019; @vergaard
et al., 2013a,b). The CPPLS analysis of a high dimensional ASD hy-
perspectral data analysis offers dimension reduction, model validation,
and tuning of model complexity as described by Lee et al. (2018). The
initiation of the model with a large number of PCs (40), and the sub-
sequent evaluation of the model fit (RMSEP, loading etc.) identified the
ONC required for the discrimination of the banana genotypes and
parentage, being assessed. The determination of ONC is usually done by

(b)

0.66
|

0.58 0.60 0.62
| L |

0.56

0.52

T T T T T

2 3 4 5
Number of Principle Components

Fig. 12. Overall modelling accuracy with optimal number of principle components for 12 Genotypes (a) and Parentage (i.e., new and old varieties) (b).
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Table 2

CPPLS based banana variety classification accuracy (please see Appendix A for variety code details).
Reference

Classification Genotype FHI17 KM5 FH25 NAR7 BLU BOG NA31 KAY M2 GRO GON SUK UA (%)

FHI17 3 1 2 2 0 0 0 0 5 1 0 0 21.4
KM5 2 13 0 0 1 1 1 0 1 1 0 3 56.5
FH25 1 1 8 0 0 0 0 0 0 2 0 0 66.7
NAR7 2 4 1 25 0 0 0 0 0 0 0 7 64.1
BLU 0 0 0 0 20 6 3 0 0 0 0 0 69.0
BOG 0 2 0 0 0 15 1 2 0 0 0 0 75.0
NA31 0 1 0 0 0 3 17 0 0 0 0 0 81.0
KAY 1 2 0 3 0 3 4 22 1 0 1 1 57.9
M2 0 0 0 1 0 0 0 1 19 0 0 1 86.4
GRO 3 0 1 0 0 1 0 1 1 16 0 0 69.6
GON 0 1 0 0 0 0 0 5 0 0 15 0 71.4
SUK 5 4 2 1 0 0 1 0 4 1 1 21 52.5
PA (%) 17.6 44.8 57.1 78.1 95.2 51.7 63.0 71.0 61.3 76.2 88.2 63.6
OA (%) 64.2

taking the first local minimum in the RMSEP curve (Mevik and Weh- Table 4

rens, 2007). Although subjective, the process was found crucial in this
study as the prediction accuracy for each genotype was variable
(Fig. 6). Wold et al. (2001) discussed the importance of upper and lower
bounds (RMSE) with several Y variables, and the PLSR’s ability to
model and analyse several Y’s together. Thus 12 PCs model fit with
RMSEP of 0.24 addressed the issue of any over parametrization. The 40
PCs model indicated the likely over parameterization by utilising vir-
tually all of the variance observed in the data set. It is therefore likely
that it would have resulted in poor model performance when applied to
novel datasets. The variable selection techniques (e.g., regression
coefficient, Fig. 9) identified particular spectral regions (wavelengths)
more sensitive to varietal segregation. The method was found con-
sistent with other similar studies (e.g., Mahmood et al., 2011; Peerbhay
et al., 2013; Schratz et al., 2019). Assuming that this model/technique
is deployed for the discrimination of banana varietal population across
other regions in Uganda, the results from 12 PCs for genotypes and 7
PCs for parentage seemed justified. This is particularly important con-
sidering high spectral similarities between banana genotypes. With the
ONC, the model considered all of these variabilities to deal with the
complexities of spectrally similar banana varieties.

The random forest (RF) algorithm applied to the resampled hyper-
spectral data also showed high potential for discriminating some of the
genotypes and their parentage. The optimization of RF parameters
‘mtry’ and ‘ntree’ was considered important to reach a robust assessment
of the model’s predictive power (e.g., Belgiu and Dragut, 2016; Schratz
et al., 2019). The ‘random search strategy’ and ‘10-fold cross validation’
was found effective and supported findings from Schratz et al. (2019).
The variable importance ranking (VIR) helped determine those WV3

ASD based RF model and prediction accuracy (%) for each genotype. The
overall percentage accuracy is average of each genotype accuracy.

Genotype  Bin No.  No. of samples ~ Model Accuracy  Prediction Accuracy
BLU Bin173 24 46.7 70.0
BOG Binl75 30 66.6 71.4
FHI17 Bin159 19 29.1 46.6
FH25 Binl67 15 34.2 36.1
GON Bin225 19 62.5 65.6
GRO Bin219 29 43.5 61.5
KAY Bin19 32 31.1 46.6
KM5 Bin161 34 66.6 65.7
M2 Bin191 35 46.8 52.7
NA31 Bin187 28 42.7 32.2
NAR7 Binl171 34 33.3 47.3
SUK Bin43 35 34.5 38.8
Mean 44.8 52.8

bands that were crucial in the RF classifications of both banana geno-
types and their parentage. Similar studies conducted on species dis-
crimination from hyperspectral data using RF also highlighted the
usefulness of VIR in identifying crucial bands for species classification
(Fletcher and Reddy; Fletcher, 2016; Peerbhay et al., 2013). The RF
model built on the WV3 satellite reflectance also identified BLU, BOG,
GON, GRO genotypes with higher prediction accuracies. The perfor-
mance of RF model slightly improved in this case (56%) as compared to
ASD reflectance resampled to WV3 wavelengths (~53%) (Table 4). All
of the SWIR bands were found to be of higher importance, followed by
the NIR and then visible bands (Fig. 14). Because of a thin haze layer

Table 3

Sensitivity-Specificity results for 12-binned genotypes predictions.
Genotype TP FN FP TN Sensitivity Specificity PPV NPV Accuracy
FHI17 3 16 313 0.16 0.99 60.00 95.14 94.61
KM5 17 17 17 283 0.50 0.94 50.00 94.33 89.82
FH25 8 7 2 317 0.53 0.99 80.00 97.84 97.31
NAR7 29 5 20 280 0.85 0.93 59.18 98.25 92.51
BLU 21 3 9 301 0.88 0.97 70.00 99.01 96.41
BOG 18 12 8 296 0.60 0.97 69.23 96.10 94.01
NA31 18 10 7 299 0.64 0.98 72.00 96.76 94.91
KAY 22 10 21 281 0.69 0.93 51.16 96.56 90.72
M2 19 16 4 295 0.54 0.99 82.61 94.86 94.01
GRO 22 7 3 302 0.76 0.99 88.00 97.73 97.01
GON 15 4 9 306 0.79 0.97 62.50 98.71 96.11
SUK 18 17 25 274 0.51 0.92 41.86 94.16 87.43

TP = true positive; FN = false negative; FP = false positive; TN = true negative; PPV = positive predictive value [TP/(TP + FP)) * 100]; NPV = negative

predictive value [(TN/(TN + FN))*100].
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Fig. 13. ASD resampled WV3 bands importance rankings for genotype classifications from the RF in terms of mean decrease Gini index (a) and for parentage (Old and

New) (b). WV3 bands refer to spectra aggregated to Woldview-3 wavelengths.

present on WV3 imagery, the higher wavelengths suffer lesser impacts.
Thus the SWIR wavelengths were ranked higher than visible bands.
Though the results were in consistent with Fletcher and Reddy (2016)
and Fletcher (2016), the analysis of resampled spectra (WV3agp.geno-
tyepe) identified the RedEdge, Green and NIR bands, along with few
SWIR bands of higher importance (Fig. 13). Thus, the VIR of WV3 bands
seemed inconclusive here and further investigation is required from a
higher quality satellite data.

The statistical analysis of the data identified a number of specific
wavelengths more sensitive to the differentiation of the 12 genotypes
and their parentage. The model contained at least one wavelength in
the Green spectral region (~510 nm) which indicated high correlation
between healthy banana plants and chlorophyll/xanthophyll content
(e.g., Rapaport et al., 2015). The Red range (~630 nm), RedEdge (RE),
specifically at ~720-750 nm, and NIR spectral range (~875 nm,
~915 nm and ~1010 nm) (Fig. 9). The Green, Red, RedEdge, and NIR
bands have been identified in other vegetation types as being sensitive
to changes in plant physiological conditions and constraints (e.g.,
Fletcher and Reddy, 2016; Shapira et al., 2013; Suarez et al., 2016;
Zhao et al., 2007; Mutanga and Skidmore (2007; 2004). The SWIR re-
gions found significant at ~1225 nm (C—H 2nd OT-CH or oil/ lipid),
~1475 nm (N—H stretch 1st OT-CONHR), ~1520 nm (N—H stretch 1st
OT- Urea), ~1750 nm (possibly fatty acid), ~2010 nm (C=O stretch
2nd OT-Urea), and ~2250 nm (fatty acid/ amino acid) were also
identified in previous research (e.g., Hansen and Schjoerring, 2003;
Rodriguez et al., 2006; Shi et al., 2015). These results indicate that
spectral differences between the banana varieties are likely the result of
variations in the composition (presence, concentration) of internal leaf
constituents. Whilst this is highly plausible, care should be taken when
extrapolating these results to other growing locations where external
abiotic and biotic conditions (e.g. water stress, pest, disease, etc.) may
also influence these particular constituents.

The field measures determined BLU, BOG, GON, GRO and KAY

Table 5

Table 6
WV3 reflectance based RF model and prediction accuracy (%) for each geno-
type. The overall percentage accuracy is average of each genotype accuracy.

Genotype Bin No. Model Accuracy Prediction Accuracy
BLU Binl173 57.1 66.6
BOG Binl75 78.3 85.0
FHI17 Bin159 50.0 25.0
FH25 Binl67 62.5 50.0
GON Bin225 83.3 74.8
GRO Bin219 66.6 77.2
KAY Bin19 50.0 50.0
KM5 Binl61 40.0 50.0
M2 Bin191 40.0 30.0
NA31 Bin187 65.3 62.4
NAR7 Binl71 16.6 48.3
SUK Bin43 50.0 52.3
Mean 55.0 56.0

genotypes to be distinguishable from both full spectral range and also
from the equivalent WV3 band widths of hyperspectral data. Validation
from NARO researchers confirmed these identified cultivars as triploids
and not of typical East African highland bananas varieties. BLU (ABB)
and KAY (ABB) are used for cooking, while BOG (AAA) and GRO (AAA)
are used as dessert bananas and GON (AAB) as plantain (Anyasi et al.,
2013; Daniells et al., 2001; Tripathi et al., 2007) (please see Appendix A
for banana variety name). This could be potentially be reason for their
spectral variability and their prevalence in Uganda. All East African
highland bananas are cooking type and triploid (AAA) with common
ancestry and are therefore different to the above-mentioned varieties.
The fact that the other cultivars have shared parentage may be the
reason that they are harder to spectrally segregate. Nevertheless, the
ability to differentiate these varieties from the others (and from each
other) does have some merit as accurately mapping their distribution

Confusion matrix for ASD based RF classification accuracies for 12-binned banana parentage (new and old).

Condition Positive Condition Negative

New old
Predictive Condition positive New TP = 113 FP = 53
Predictive Condition negative old FN = 52 TN = 116
Prediction accuracy (%) 68.5 68.7
Overall Accuracy (%) 68.6
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Fig. 14. Variable importance ranking of WV3 bands (satellite) for dis-
criminating banana genotype in RF model.

can indicate how successfully current banana breeding programs are. A
follow up study will check the robustness of developed method by ap-
plying it on classification of similar banana varieties grown in other
districts of Uganda.

The translation of the full hyperspectral measures of banana plants
to the spectral resolution of WV3 and then validation of results from
actual WV3 satellite data, was found particularly crucial in this study.
This provided a greater confidence in extrapolating these findings to
satellite platforms. As WV3 imagery could be considered as expensive
to purchase over large areas and is subject to spectral degradation from
atmospheric scattering, haze, cloud and viewing geometry, this initial
evaluation under ‘controlled’ conditions was deemed worthwhile. The
results achieved and the additional benefit that high-resolution satellite
imagery can provide information of plant structure (crown diameter,
leaf orientation, canopy and sucker density etc.), all parameters that
can be influenced by variety, does justify the further evaluation of the
satellite platform itself. Particularly, the extrapolation of leaf-level re-
flectance of banana genotypes to satellite data is novel, given that the
leaf angle and whole plant morphology as potential difference between
the leaf-level and canopy-level reflectance profile (Knyazikhin et al.,
2013). Gara et al. (2019) discussed two means of extrapolating leaf-
level reflectance to canopy-level: direct extrapolation and canopy in-
tegrated method, both require samples to be taken from the sunlit top-
of-the canopy layer. However, banana plants have different structure,
configuration and leaf shape and as such detection of sunlit apex is
difficult on satellite data. In this study, the pre-processing of WV3 data
helped reducing the atmospheric impact by converting pixel value to
surface reflectance. The 30 cm PAN sharpened WV3 imagery was used
to delineate banana plant boundaries using object-based approach
suggested by Johansen et al. (2014), from which canopy-level re-
flectance was extracted. This allowed the direct comparisons of two
reflectances possible by accounting for banana canopy structures. Ad-
ditionally, satellite (or airborne data) can provide essential insights into
the spatial and temporal distribution of banana plants, which itself
offers significant benefit for better predicting regional production, for
biosecurity preparedness and for post natural disaster monitoring. Perry
et al. (2018) mentioned the advantage of canopy-level reflectance
measured from UAVs over leaf-level reflectance in characterizing %N
variability across an orchard, and the canopy N maps generated from
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the UAV imagery could be highly valuable as related technologies. As
the presence of environmental haze and overcast condition at this time
of year (Feb-Mar) is a common phenomenon of tropical regions, such as
Uganda, getting a high quality data will be a challenging task. Al-
though, a few atmospheric correction methods were applied to reduce
the influence of haze, a more efficient haze removal algorithm is re-
quired to reduce the impacts in visible and NIR regions (e.g., Zha et al.,
2012; Sun et al., 2017). For future evaluation of remote sensing in this
region, some consideration would be required to determine the optimal
timing of capture and even platform used. Lower altitude airborne or
even UAV based platforms may be useful. Freely available satellite data,
such as Sentinel 2, provide spectral resolutions matching some of the
WV3 bands and hence can be used for further investigation in banana
genotype classification. Gara et al. (2019) explored the upscaling of
leaf-level measurements to simulated Sentinel2 data. The additional
measure of banana plant health, including incidences of pest, disease
and management can significantly improve Uganda’s ongoing surveil-
lance and response to high risk constraints.

This study as such established several sampling protocols that
combined DNA tissue testing with the hyperspectral measurement of
individual banana leaves. Whilst the results achieved only partial suc-
cess in differentiating all 12 varieties, it was successful in determining
the spectral differences (and similarities) between typical ECA banana
varieties, and in their parentage (usage). The information will be used
in building spectral library for banana verities by following spectral
library building protocols as suggested by Rao et al. (2007) and
Jiménez and Diaz-Delgado (2015). The method can be extended to
other crop variety predictions at other locations. It is noteworthy that
the sampling protocols followed in this study provided the best quality
data (limiting disease, developmental differences, etc.) that when im-
plemented into models stand the best chance of achieving positive re-
sults under, real-world scenarios. This part is proposed in a follow up
study on prediction of same varietal population in the other districts
(Isingiro, Mbarara) of Uganda, to assess the modelling performance
under varying locational and seasonal conditions. The hyperspectral
measurements and WV3 data have already been obtained for these two
districts.

The outcomes from this scoping study demonstrate some potential
of remote sensing as a beneficial technology for differentiating the types
of banana (cooking type, plantain, dessert) and also for the dis-
crimination of some varieties. In the 2008/09 agricultural census, UBoS
(Uganda Bureau of Statistics) has used this categorization to report
planted, production and productivity (PARAM, 2015; UBoS, 2010).
Thus further evaluating of the accuracies of remote sensing data for the
elicitation of banana type at the household level would offer significant
benefit to future LSMS-ISA and WB survey missions in Sub-Saharan
Africa.

6. Conclusions

The study advanced the potential for using in-situ hyperspectral
remote sensing data to identify banana genotypes under Ugandan
growing conditions. A controlled experiment undertaken within the
National Banana Research Program site at National Agricultural
Research Organization (NARO) research station in Kampala, Uganda,
ensured the influence of non-varietal parameters were minimised and
as such any spectral variation was genotype specific. The statistical
analysis of reflectance spectra measured from 12 banana genotypes
(identified after DNA tissue testing of 43 banana varieties), achieved
higher prediction accuracies for BLU, BOG, GON, GRO and KAY gen-
otypes. The further extrapolation of the hyperspectral measures to
bandwidths consistent with the WV3 satellite also achieved encoura-
ging results. This outcome not only presents as a novel approach for
transitioning ground based leaf measures to satellite based sensors, but
also supports the increased scalability of banana varietal mapping
across Uganda, through remote sensing.
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The accurate discrimination of banana usage from both the hyper-
spectral and satellite based sensors also offers significant benefit. By
mapping of distribution of old and new varieties, NARO can form a
better understanding of the extent of adoption of newly developed
genotypes. This information can better inform of market acceptance as
well as future sustainability to pest and disease as well as resilience to
food shortages.

Whilst the results presented in this study support the integration of
DNA tissue testing and remote sensing for discriminating some banana
cultivars, further research is required to better understand the influence
of growing location and season on the spectral responses. Also the
evaluation of additional platforms such as airborne and UAV may re-
duce the influences of atmospheric haze that is prevalent in the
Ugandan region.

This study has been a collaborative partnership between the Uganda
Bureau of Statistics under the World Bank LSMS-CGIAR SPIA partner-
ship and the University of New England.
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Banana variety Code and Name sampled at NARO Research Station after DNA fingerprinting results

BLU Bin173 Bluggoe/Kivuvu
BOG Binl175 Bogoya cavendishes/ williams/grandnaine/lakatan/robusta/ dwarf/ chinese cavendish
FHI17 Bin159 FHIA17/KABANA 3H
FH25 Bin167 FHIA25/KABANA 7H
GON Bin225 Gonja/Nakatansese/Manjaya/Kakira/Nakakongo/Mukono/Obinolewayi/Nig-erian Agbaba
GRO Bin219 Bogoya local bogoya/Gros Michel
KAY Binl9 Kayinja
KM5 Bin161 KM5/KABANA 6H
M2 Bin191 M2
NA31 Bin187 NARITA 31 - Pisang Ceylan
NAR7 Bin171 NARITA 7 -M9/Kiwangazi
SUK Bin43 Sukari Ndizi/Kabaragara
Appendix B

Abbreviation code description

Consultative Group for International Agricultural Research
Canonical Powered Partial Least Squares

Food and Agriculture Organization
Living Standards Measurement Study — Integrated Surveys on Agriculture

National Agricultural Research Organization

Root Mean Square Error of Prediction
Standing Panel on Impact Assessment

ASD Analytical Spectral Devices
CGIAR

CPPLS

ECA East and Central African

FAO

LSMS-ISA

ML Machine Learning

NARO

PCA Principal Component Analysis
PLSR Partial Least Squares Regression
RF Random Forests

RMSEP

SPIA

SWIR Short-Wave Infrared

UBoS Uganda Bureau of Statistics
NIR Near-Infrared

WB World Bank

Wwv3 Worldview 3
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