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ARTICLE INFO ABSTRACT

Keywords: In spite of the dominance of traditional mineral exploration methods that demand physical characterization of
Mineral exploration rocks and intense field work, remote sensing technologies have also evolved in the recent past to facilitate
ASTER mineral exploration. In the present study, we have processed visible near infrared (VNIR) and shortwave infrared
mﬁchite (SWIR) bands of Advanced space-borne thermal emission and reflection radiometer (ASTER) data to detect

surface mineralization signatures in Mundiyawas - Khera area in Alwar basin, north-eastern Rajasthan, India
using spectral angle mapper (SAM). The potential of SAM method to detect target under variable illumination
condition was used to delineate galena, chalcopyrite, malachite etc. as surface signatures of mineralization. It
was ensured that the identified surface anomalies were spectrally pure using pixel purity index. Spectral
anomalies were validated in the field and also using X-Ray diffraction data. Spectral anomaly maps thus derived
were integrated using weight of evidence method with the lineament density, geochemical anomaly, bouger
anomaly maps to identify few additional potential areas of mineralization. This study thus establishes the im-

Favorability index

portance of remote sensing in mineral exploration to zero in on potentially ore rich but unexplored zones.

1. Introduction

Copper is one of the most widely used metals in India and its usage
is next only to iron and aluminium in terms of volume. The Copper
mineralization in Alwar District, Rajasthan, India has been recorded
within the Kushalgarh, Sariska and the Thanaghazi Formations of the
Ajabgarh Group (Mukhopadhyay, 2009). Presence of numerous old
workings, huge mine dumps, slag heaps in the Jodhawas and Shyam-
pura area in the Kushalgarh Formation within the biotite- marble and
quartz- marble rocks and fine dissemination, stringers and small veins
of mostly malachite are indications of Cu mineralization in the area
(Heron, 1953; GSI, 2011, 2016). Surface indicators include malachite
stain and specks of chalcopyrite within the brecciated quartzite. The
Geological Survey of India (GSI) (2016) reported Cu mineralization
within the Thanaghazi Formation is evidenced by the presence of ma-
lachite, chalcopyrite and bornite. Cu minerals occur as dissemination
and stringers within the tremolitic marble, carbon phyllite host rocks.
According to Dr S K Wadhawan, deputy director general, GSI, "A
108.10-metre-thick copper mineralization from the Alwar basin of the

* Corresponding author.
E-mail address: shovan.iitb@gmail.com (S.L. Chattoraj).

https://doi.org/10.1016/j.jag.2020.102162

north Delhi fold belt found. The tentative resource of copper is about 11
million tonnes with sporadic presence of gold and silver that are 5-15
parts per million" (Times of India, 2012). GSI further reported that this
is the first report of such large deposit from Alwar Basin and might turn
out to be the largest occurrence in Western India.

Conventional mapping and exploration techniques may not be
adequate in difficult and inaccessible terrains. Hence, there is a need to
use modern techniques such as remote sensing to overcome this lim-
itation and identify potential deposits of copper (Yang et al., 2005).
Intensive field exploration activities are required in mineral exploration
for understanding the geology of the area through lithological and
mineral mapping, so that it leads to potential exploration targets
(Sabins, 1999a; Sun et al., 2001; Thompson et al., 1999). For this
purpose, remote sensing is already a validated tool for mapping in-
dicator minerals of alteration and mineralization zones (Asadzadeh and
de Souza, 2016; Kruse, 1996, 2012, Kruse et al., 2003; Ramakrishnan
et al., 2013; Ramadan and Kontny, 2004). Traditionally, geological
mapping and mineral exploration methods utilize physical character-
istics of rocks and soils such as mineralogy, weathering characteristics,
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geochemical signatures, and landforms to determine the nature and
distribution of geologic units and to determine exploration targets for
economic minerals (Bishop et al., 2011; Goetz et al., 1985, 2001, 2009).
But remote sensing can detect subtle mineralogical differences, often
important for distinguishing background rock formations and potential
mineralization zones, which are often difficult to map during field
survey (Boardman and Kruse, 1994; van der Meer et al., 2001; van der
Meer et al., 2012; van der Meer, 1999, 2012, Madani et al., 2003).
However, demarcating the mineral prospects zones using space-borne
data is still in developing stage in India. Rajasthan state is rich in
economical mineral deposits which need to be further explored and
extended. Demonstration of remote sensing technology with reference
to the quantitative information of the mineral constituents can further
fill the gap between remote sensing and geochemistry (Borengasser
et al., 2007; Cloutis, 1996; Chattoraj et al., 2018; Jain and Sharma,
2019; Kumar et al., 2020; Sengar et al., 2020). The aim of the study is to
demonstrate the applicability of image processing techniques and
spectral analysis of multispectral imagery in locating and characterizing
potential copper rich zones in parts of Alwar District, Rajasthan, India.

2. Study area and geological setting

The area of Investigation, Mundiyawas-Khera is located 5 km south-
west of Thanagazi Tehsil Head Qaurter, Alwar District, Rajasthan.
Geographically Mundiyawas-Khera area covers the longitudes 76
12/00”E to 76 23’00”E and latitudes 27 26’45” N to 27 26700”N. The
study area covers parts of Alwar district of which the research focusses
more on Khera block. It forms a part of the Alwar basin of North Delhi
Fold Belt comprising rocks belonging to the Thanagazi Formation of the
Ajabgarh Group of the Delhi Supergroup (Sinha-Roy et al., 1998; Gupta
et al., 1981). Ridges of rocky and precipitous hills are observable fea-
tures in the region. Geologically the area consists of Pre-Cambrian rock
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units belonging to Aravalli and Delhi Super Group (Fig. 1).

A thick pile of Proterozoic metasedimentary and metavolcanic se-
quences belonging to the Delhi Supergroup are exposed in the area
(Chowdhury et al., 1984). These metasediments overlie basement
gneisses with an unconformity (Naha and Mohanty, 1988). The study
area exposes rocks of the Delhi Supergroup (DSG), which are classified
into the Raialo Group, the Alwar Group and the Ajabgarh Group. The
Raialo Group unconformably overlies gneisses of the basement, which
contains rafts of quartzite and enclaves of amphibolite. The Raialo
Group includes a thick lower sequence of vitreous white quartzite of
Serrate Formation, which is overlain by a thick volcano-sedimentary
sequence (Tehla Formation) constituting the upper part of Raialo
Group. A well-developed unconformity represented by polymictic
conglomerate and a structural break constrains the interface of Raialo
and Alwar Group of rocks. The rocks of the Alwar Group have been
classified into the Rajgarh, Kankwarhi and Pratapgarh Formation. The
generalized sequence of the Alwar Group is a basal conglomerate, ar-
kose and quartzite followed by a sequence of argillaceous and impure
calcareous rocks represented by pelitic schist containing different mi-
neral assemblages, impure marble and para-amphibolite, which in turn
is followed by a sequence of mainly arenaceous rocks with some
amount of pelitic sediments. The Ajabgarh Group of rocks conformably
overlies the predominantly quartzitic Alwar Group of rocks. It com-
prises metamorphosed argillites with intercalated arenites and sub-
ordinate carbonates. The Ajabgarh Group is subdivided into three
Formations. The lower unit is mainly a carbonate facies (Kushalgarh
Formation) and is succeeded by ferruginous quartzite-phyllite-quartzite
sequence (Sariska Formation). The upper Thanagazi formation is
composed of carbon phyllites (often tuffaceous), andalusite-biotite-
sericite-garnet-chlorite schist and some doubtful felsic volcanic rocks.
Later intrusives mainly include metabasic rocks and granites.

Western Region, GSI upon subsurface drilling operation in the area

Legend
z
:?’ @ Copper
‘o G Gossan
o
~
~N
Lithology Formation Group
Fine sand, siit and clay Quarterneries
Amphibolite/meta-basic rock Intrusive
Phyllite/Carbonaceous Phyllite,
| A Biotite-Sericite-Garnet Thanagazi
= - Chlorite schist with Dolomitic
° marble at places
™
o~
:r; Brecciated ferruginous quartzite Seriska Ajabgarh
Banded marble, dolomitic marble, Kushalgarh
amphibole quartzite
Massive quartzite, locally feldspathic
and gritty Pratapgarh
Sericite-biotite-g t ite schist K i Alwar
£
?-, Quartzite with basic flows at places
2 Quartzite, phyllite, schist Rajgarh
&
Schist
Feldspathic quartzite with basic flows Tehla Raialo
Quartzite
0 25 5 10
C—, T

(Source: GSI 1:50,000 Geological Map)

Fig. 1. Lithological Map of the study area with generalized stratigraphy (after Roy and Purohit, 2015; GSI, 2016).
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Fig. 2. False Colour Composite Image of ASTER (R: G: B = 4:6:8).

has reported more than 100 m thick sulphide mineralization associated
with the meta volcano-sedimentary sequence (Khan et al., 2013). The
ore mineralization mainly consist of chalcopyrite, arsenopyrite and
pyrrhotite. The mode of occurrence is mostly in the form of dis-
seminations, veins, stringers and foliation parallel layers which at times
show discordant relationship (Khan et al., 2014). As far as the felsic
volcanic host is concerned, ore mineralization occurs in dissemination
form, at places as segregate in association with biotite which mostly
occurs as rhombic, rectangular in stretched shape (Khan et al., 2013,
2014). This is indicative of syngenetic-type copper mineralization
within the felsic volcanics as happened in case of Khetri copper deposit
also (Golani et al., 1992, Banerjee, 1980; Pant et al., 2015; Khan and
Sahoo, 2012). Hence, it is widely felt that the felsic volcanism is one of
major force behind emanation of the mineralization, which got con-
centrated along the foliation planes, axial planar cleavages and other
weak planes developed during late phase deformation. However, hy-
drothermal activity in the area must be prevalent phenomenon as evi-
denced by presence of quartz-carbonate veins within the felsic and
dolomitic marble host rocks. Late phase silica metasomatism is quite
prominent as manifested by development of tremolite within the do-
lomitic marble at metasomatic contact zones. A reducing depositional
condition for sulphide mineralization is favoured by the occurrences of
carbon phyllite layers and carbonate veins (Boopathi, 2010). Khan

et al., 2012 and 2013 reported that widespread distribution and asso-
ciation of sulphide minerals (dominated by chalcopyrite, pyrrhotite and
arsenopyrite) within the meta-greywacke, quartzite, felsic volcanics
and their altered varieties in different modes suggest a volcanic origin
for copper mineralization. It has been recommended that adjoining
areas can be further explored using the mineralization controls.

3. Materials and methods
3.1. Pre-processing

ASTER L1B data is used for mineral mapping and spectroscopic
analyses in this study. Pre-processing is carried out prior to mineral
mapping. A specific radiometric artefact associated with ASTER data is
‘crosstalk’ effect, caused by signal leakage from band 4 into adjacent
bands 5 and 9 (Kalinowski and Oliver, 2004). Although the impact of
crosstalk is negligible during image analysis, crosstalk correction has
been applied prior to any further processing because the margin of error
caused by crosstalk may have more considerable effect on the assumed
data analysis than the degradation of image quality. Following crosstalk
correction, radiometric and atmospheric corrections have been done.
Atmospheric correction done using IARR (Internal Average Relative
Reflectance) method gave out satisfactory reflectance images. As this
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Fig. 3. Band Ratios indicating (a) Alunite/Kaolinite (4/6) (b) Sericite (5/6) (c) Epidote (5/8).

work takes substantial cues from data integration from multiple
sources, as satellite data i.e. ASTER L1B, Resourcesat -1 LISS IV and
Landsat 8 OLI data, the Bouguer gravity anomaly map of the World
Gravity Map (WGM2012), georeferenced geochemical data points from
GSI, 2016 report was projected onto WGS 84 datum and UTM Zone 43
Co-ordinate system during the pre-processing stage for the mentioned
study area. Integration of all thematic layers including the interpolation
was carried out at the same scale with same confirmed ground-based
geo-locations for compliance of all layers to maintain synergy.

3.2. False colour composite (FCC) and band ratios

Just like vegetation is enhanced in a standard FCC due to high re-
flectance in the NIR region, Altered zones can also be visually enhanced
by applying suitable band combinations. The SWIR false colour image
created by applying bands 4, 6, and 8 to the channels, Red, Green and
Blue respectively is useful for identification of alteration (Fig. 2)
(Yajima et al., 2007). This is due to the fact that major altered minerals
have characteristic spectral features in the SWIR region.

Intending to derive more information from the imagery, band ratios
that highlight specific altered minerals have been generated. The
characteristic absorption dips of altered minerals help to generate mi-
neral specific band ratios. The ratios 4/6, 5/6 and 5/8 indicate the
minerals Alunite/Kaolinite(Argillic), Sericite (Phyllic) and Epidote
(Propylitic) respectively because of absorption dips at bands 6 and 8
(Fig. 3) (Yajima et al., 2007).

Moreover, Argillic alteration, phyllic alteration, propylitic alteration
including calcite can be identified by the color composite image of band
ratios by applying argillic alteration to red, phyllic alteration to green
and propylitic alteration to blue channels. By doing so, the alteration
assemblage can be visualized from the resultant color composite (Fig. 4)
(Table 1).

3.3. Mineral mapping

MNF (Minimum Noise Fraction) is applied on the pre-processed
image to reduce the dimensionality followed by PPI (Pixel Purity Index)
to find the spectrally pure pixels. The reflectance spectra of the most
spectrally pure pixels are matched with a reference spectral library to
identify the mineral. Higher scores on a scale of 0-1 mean best matches.

Considering this criterion and also the user’s knowledge about the area
and pattern of mineral occurrences, the spectra with best match is
chosen as a mineral endmember. The endmembers are then used to
perform classification ideally on the inverse MNF image. In this study,
Mineral mapping has been done using SAM (Spectral Angle Mapping)
classification technique (Fig. 5, Table 2).

In SAM classification, the spectral similarity between the image
spectra and the reference spectra is calculated. The spectral similarity is
measured by calculating the angle between the two spectra, treating
them as vectors in n-dimensional space (Rowan and Mars, 2003). The
reference spectra in this case was extracted from the image after
matching it with both library as well as laboratory generated spectra.
Smaller angles between the two spectra indicate high similarity and
high angles indicate low similarity. The spectral threshold value by
default is 0.1. This threshold value for each endmember was reduced
gradually until the classified pixels coincided with the lithology of the
area.

3.4. Lineaments and lineament density

Lineaments extracted from ResourceSat-1 high resolution linear
imaging self-scanner (LISS-IV) and Landsat-8 Operational Land Imager
(OLI) satellite imagery (Roy et al., 2014; Ganduri et al., 2018; http://
www.eotec.com/images/IRS_-_Current_and_Future). Major structural
features in the study area were extracted using directional filtering
technique (Chavez and Bauer, 1982; Pour and Hashim, 2015)
(Fig. 6(a)). The lineaments mapped are of structural and geomorpho-
logical origin. The lineament density map which shows the length of
lineaments per unit area is also generated (Fig. 6(b)). The corre-
sponding rose diagram indicates that the overall strike direction of the
lineaments falls in between NNW and NNE directions.

3.5. Gravity data

Bouger gravity data used in this study are point data extracted from
WGM2012 Earth gravity model (2’ x 2’ resolution) provided by
International Gravimetric Bureau (BGI). WGM2012 gravity anomalies
are derived from the available Earth global gravity models EGM2008
and DTU10 and include 1’x1’ resolution terrain corrections derived
from ETOPO1 model that consider the contribution of most surface


http://www.eotec.com/images/IRS
http://www.eotec.com/images/IRS

S.L. Chattoraj, et al.

Int J Appl Earth Obs Geoinformation 91 (2020) 102162

T6"1715"E

0 2 4

I )

762219

8

Fig. 4. Band Ratio Colour Composite.

masses such as atmosphere, land, oceans, inland seas, lakes, ice caps
and ice shelves. These products have been computed by means of a
spherical harmonic approach using theoretical developments carried
out to achieve accurate computations at global scale. The point data
containing bouger gravity values are then interpolated using spline
technique to generate an interpolated raster layer (Fig. 7).

The interpolated bouger gravity map shows gravity values ranging
from 57.11-97.30 mgals. Rock types within an area often contrast en-
ough in density to cause gravity anomalies. For example, sedimentary
rocks and their weathered derivatives that fill basins almost always

have low densities due to dominance of Quartzo-feldspathic minerals
and are characterized by gravity lows on anomaly maps. Mafic / basic
rocks, which contain high density Fe-Mg minerals are often associated
with gravity highs. These differences can be used to map large regions
where rocks are inaccessible or concealed, to look for faults responsible
for juxtaposing rocks of different densities or to infer structures such as
basins, arches and buried intrusions.
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Table 1 Table 2

The evidence layers used for weighted sum overlay. Number pixels and area covered ((m?) by of the each end member class.
Evidence Layers Weights Assigned (On a scale of 1-5) SL. No End member Mineral Pixel count Area (m?)
Cu concentration map 1 Galena 19 4275
Mn concentration map 2 Chalcopyrite 1094 246,150
Ti concentration map 3 Malachite 346 77,850
Bouger Gravity Map 4 Andalusite 3934 885,150
Lineament Density Map 5 Pyrite 204 45,900

Pyrite mineral map
Malachite mineral map
Chalcopyrite mineral map
Galena mineral map

AU DDA WRE RN

3.6. Geochemical sampling

Geochemical data for the study area was collected from GSI report
(2016). As per the report, the sampling was done from lower order
streams. The samples were analyzed by XRF (X-ray fluorescence) and
ICPMS (Inductively Coupled Plasma Mass Spectrometry) methods. The
elements of interest from this geochemical analysis are Mn, Ti and Cu.
However, Mn and Ti are available as MnO and TiO» respectively from
which proportions of Mn and Ti are extracted by oxide to element
conversion. The extracted weight percentages are interpolated using
spline method to generate individual concentration maps for Mn, Ti and
Cu (Fig. 8). Spatial distribution of other important elements was also
plotted using IDW interpolation method (Fig. 9). Lack of Mn and Ti can
be seen near Khera area (Fig. 8). Likewise, an anomalous presence of
copper can be observed near Khera where Mn and Ti concentrations are
also less or absent (Fig. 8).

3.7. Weighted sum overlay

The Weighted Sum function overlays several rasters, multiplying
each by their given weight and summing them together. In this study,

the layers used for overlay are Lineament Density, Gravity,
Geochemical maps (only Mn, Ti and Cu) and mineral map produced
using SAM method. Prior to overlay, all the layers are standardized to a
common range (1-10) so as to avoid any discrimination in assigning
weightages. Out of these layers, maximum weightage is given to mi-
neral map followed by geochemical maps, lineament density and
gravity. The output of the weighted sum overlay will be a favourability
map for potential copper deposits in the study area (Fig. 10).

The weights assigned for the corresponding evidence layers for use
in the Weighted Sum Overlay technique is shown in the table below.
Based on the weights assigned to each layer, their importance will be
reflected in the Overlay analysis. The weights are assigned to the layers
on the basis of their relevance and reliability to the present study. For
instance, the graviy layer used is of a coarser resolution (2’ x 2’) and is
more apt for small scale studies. Hence, the least weightage is assigned
for this layer. The interpolated geochemical concentration maps (Cu,
Mn, Ti) are also assigned lesser weightages as the sampling was done at
2km interval. The mineral maps are given higher weightages because
in these layers, each pixel (15m) is classified based on their spectral
properties, which makes it more reliable than the others.

4. Results and discussion

ASTER has prodigally been used for mapping and detection of Cu-
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mineralization (Alimohammadi et al., 2015; Amer et al., 2010; Chen
et al., 2010; Gad and Kusky, 2007; Gomez et al., 2005; Guha et al.,
2019; Pour and Hashim, 2011, 2012a, 2012b; Rowan et al., 2003;
Rowan and Mars, 2003). SAM has widely been used in spectral remote
sensing to map the surface expressions in all application fields (Van der
Meer and Jong, 2003; Kodikara et al., 2015). SAM does not address the
problem of spectral mixing (Pour and Hashim, 2014; Sanjeevi and
Abhishekh, 2006; Sanjeevi, 2008). The most erroneous assumption
made with SAM is that the endmembers chosen to classify the image
represent the pure spectra of the reference material (Girouard et al.,
2004; Kalinowski and Oliver, 2004; Kodikara et al., 2015; Pour et al.,
2017; Rao and Guha, 2018; Zhang and Li, 2014). The reference spec-
trum in this case belongs to a pixel that comprises spectra of several
other materials including the mineral of interest. So, the pixels classi-
fied on the basis of this reference spectra may not entirely consist of a
particular mineral but it will also contain the mineral that is being
looked for, because the minerals present within that pixel have similar
chemical composition and belong to the same parent mineral group.
Hence, the mineral map seems to be unaffected by this problem.

The accuracy of a mineral map can be determined by the degree of
coincidence it has with the corresponding lithology, and also with band
ratios and FCC (Hewson et al., 2005; Ninomiya, 2004). Point to point
ground validation of the classified mineral map revealed a substantial
match at the scale under consideration. To further strengthen this, XRD
(X-ray diffraction) analysis of representative samples validates the
purity of the image spectra of mineral end-members. For example, the
presence of malachite was verified in the field (Fig. 11(a)). The lab
generated spectra of the sample collected from the field shows three
prominent absorption dips at 1.4, 1.9 and 2.2 um (Fig. 11(b)). The la-
boratory spectrum of malachite was compared with the ASTER re-
flectance spectrum from the same location from where the sample was
collected. Both the spectra almost match with each other and a pro-
minent absorption dip around 2.2 pm was observed in common be-
tween the two spectra (Fig. 11(c)). Infrared spectra of malachite up to
14um also help characterization of malachite Fig. 11(d). The XRD

results of the sample collected from the field also helps to further va-
lidate the presence of malachite, based on the characteristic peaks of
the XRD plot (Fig. 11(e)).

It is observed from the lineament map that comparatively more
number of linear structural features are present towards south-east of
Khera area which may indicate possible zone of structural weakness.
From the lineament density map it is also observed that the density is
more towards the south-east direction of Khera. High lineament density
values can be correlated with alteration zones to a certain extent cou-
pled with possible structural weakness due to the presence of fractures /
faults etc. which may have acted as conduits for emanation of hydro-
thermal fluids. However, the actual relevance of lineament density to
copper deposits can be known only after the overlay process i.e., in-
tegration with other geophysical parameters.

The area of interest i.e., Khera and surroundings is mostly associated
with almost high gravity values. One more noteworthy observation is
that, of all gravity values (57.11-97.30 mgals) of the study area, the
known locations of copper and gossan occurrences fall within a range of
74.88-80.20 mgals. The exact reason for this cannot be accurately in-
ferred since the gravity data available is only for a regional level.
However, it is inferred from the study that gravity range in indicative
about high density structure in depth and hence, was taken as a the-
matic layer.

The distribution of elements in the surface is largely governed by
the background elemental constitution, ore systems developed and
secondary weathering processes. The mobile elements are mainly con-
trolled by the process of weathering, whereas surrounding/underlying
lithology is the key factor controlling immobile to slightly mobile ele-
ments (Mason and Moore, 1985). Taking these facts into consideration,
a general interpretation, has been arrived at, to target potential copper
occurrences / deposits. OZGUR, 1993 reported selective absence of Mn
and Ti among common minor and trace elements indicating blind
copper deposits. Therefore, absence of Mn-Ti minerals should be con-
sidered as a favourable criteria for copper occurrence. The geochemical
concentration maps for the elements Mn, Ti and Cu prepared on this
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basis give satisfactory results. As expected, absence of both Mn & Ti can
be seen near Khera area (Fig. 8(a),(b)). Also, an anomalous presence of
copper can be observed in this area where Mn & Ti concentrations are
also less or absent (Fig. 8(c)). This finding correlates with the surface
indications in the form of malachite staining observed during field
work. Notably, malachite is a prominent pathfinder for copper.

The area is dominated by base metal mineralization and hence, al-
tered minerals and pathfinder elements/ minerals (e.g. Cu-indicators
like chalcopyrite, malachite and sulphide rich phases like pyrite and
galena) play an important role, if the ore mineralization is to be ad-
dressed based on surface indicators (Banerjee, 1980; Boopathi, 2010;
Golani and Narayan, 1992; Khan and Sahoo, 2012, Khan et al., 2013,
2014, Mendas and Delali, 2012; Mukhopadhyay, 2009; Nigam and
Geological Survey of India, 2016; Pant et al., 2015; Sengar et al., 2020).
This is why the SAM classified outputs has been given maximum
weights, immediately followed by prevalent surface geochemical sig-
natures, lineament density and gravity. It is also noted that lineament
map and gravity maps are swapped there happens no significant to final
weighted overlay.

The resultant of the weighted sum overlay visually infers that fa-
vourable areas for copper occurrences / deposits predominantly lie
between east and south of Khera. The result concurs with all the evi-
dence thematic layers. Apart from the favourable areas in the central
region of the study area, some potential areas can be seen towards the
south of Khera. Pixels classified as chalcopyrite in the mineral map as
well as FCC highlighting alteration almost coincide with the same area
which gives a strong clue of copper occurrence / deposit in the area
(Figs. 4 and 5).

5. Conclusions

Chalcopyrite is the primary ore mineral of copper in the study area.
SAM output shows the presence of chalcopyrite towards the south-east
of khera. In the copper concentration map derived from stream sedi-
ment geochemical analysis, it can additionally be seen that there is an
anomalous presence of copper in the central region of the study area.
The approach used in this study helps to localise the area for further
exploration with the help of Earth Observation & Ancillary data. In this
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case, even though there are surface indications of copper like malachite to mineral mapping or any spectroscopic studies, a suitability study for
near Khera area, relatively unexplored areas towards the south of Khera areas suitable for mineral mapping can be adopted. The mineral map-
should also be explored intensively as they seem to be promising for ping of such in turn gives a final output at pixel level in terms of mineral
potential copper deposits. classification.

This study also gives an insight into the exploration strategy. Prior
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