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Remote sensing provides valuable insights into pressing environmental challenges and is a critical tool for
driving solutions. In this Primer, we briefly introduce the important role of remote sensing in forest ecology
and management, which includes applications as diverse as mapping the distribution of forest ecosystems
and characterizing the three-dimensional structure of forests. We describe six key reasons why remote
sensing has become an important data source and introduce the different types of sensors (e.g., multispec-
tral and synthetic aperture radar) and platforms (e.g., unmanned aerial vehicles and satellites) that have been
used for mapping a diversity of forest variables. The rapid advancement in remote-sensing technology, tech-
niques, and platforms is likely to result in a greater democratization of remote-sensing data to support forest

management and conservation in parts of the world where environmental issues are the most urgent.

Introduction

Remote sensing is the acquisition of information about some
feature of interest without coming into direct contact with
it. Popular forms of remote sensing used in the environmental
sciences are images of the Earth’s surface acquired from
sensors mounted on airborne and spaceborne platforms.
Remote sensing has been used for mapping the distribution
of forest ecosystems, global fluctuations in plant productivity
with season, and the three-dimensional (3D) structure of
forests.

The range and diversity of sensing systems, as well as the
variety of applications, have evolved greatly over the last
century. The types of images used range widely from con-
ventional aerial photographs that capture a view similar to
that observed by the human eye to images that reveal ele-
ments that might be invisible to the human eye, such as the
physical structure and chemical composition of the Earth’s
surface.

Remotely sensed imagery provides a view of the Earth’s
surface in such a way that allows features on it to be identi-
fied, located, and characterized. Moreover, although each im-
age provides a snapshot of the environment, it is commonly
possible to acquire imagery repeatedly in time. As a result,
remote sensing has been used in a diverse range of forest
ecology and management applications from mapping invasive
species to monitoring land-cover changes, such as habitat
fragmentation, to estimating biophysical and biochemical
properties of forests.

This Primer seeks to briefly review the role of remote
sensing in forest ecology and management. It focuses on
non-terrestrial forms of remote sensing (i.e., it does not
include terrestrial laser scanning or field spectroscopy); re-
views the range of sensors, platforms, applications, classifica-
tion methods, and choices of remote-sensing systems; and
concludes by indicating future directions in this rapidly
evolving interdisciplinary field.

Gheck for
Updates

The Ubiquity of Remote Sensing: Six Key Reasons

Given that many forest environmental variables can be estimated
directly in the field, why has remote sensing become an impor-
tant data source? We note six key reasons for this situation:

First, remotely sensed imagery provides a synoptic view. The
vantage provided by an Earth-observing sensor ensures that im-
agery captures a complete picture of the environment in its field
of view. Thus, every visible feature, including its location and its
location relative to that of all others in the imaged area, is
captured. In short, this gives imagery a map-like format that pro-
vides a complete survey of the imaged area rather than field
data, which are often based on a very limited set of samples
from which inter-sample site information would have to be in-
ferred by some form of interpolation. Because of this complete
survey, remote sensing allows wall-to-wall mapping and moni-
toring of important ecological variables, such as land-cover
change.

Second, remotely sensed data are available everywhere
and often at a range of spatial and temporal scales. Key envi-
ronmental remote-sensing systems, such as those carried by
the Landsat satellites, have provided a constantly updateable
stream of imagery for the entire planet since the 1970s. Avail-
ability can sometimes be constrained by technical problems
or cloud cover, but in principle, imagery should be available
everywhere irrespectively of location, enabling inter alia study
of sites no matter how remote or hazardous they might be.
Furthermore, historical remote-sensing data allow us to go
back in time to look at the causes of present environmental
issues.

Third, remotely sensed imagery has a high degree of homoge-
neity. Critically, data from key environmental remote-sensing
systems are acquired under relatively fixed conditions, and the
data captured relate to the way in which radiation interacts
with the environment, which is constant in space and time; there
are no human-induced complications, such as differences in
measurement practices from one country to another.
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Figure 1. Common Remote-Sensing Platform and Sensor Combinations and Remote-Sensing Data

(Left) Platforms and most commonly utilized sensors for specific platforms.

(Right) True-color digital aerial photography and false color with NIR sensing (top), LIDAR point cloud of vegetation near a river (middle), and SAR data for two

polarizations from Sentinel 1 (bottom).

Fourth, the imagery contains, or can easily be converted to,
digital images and as such can be easily integrated with other
spatial datasets in a geographical information system.

Fifth, per unit area, remote sensing is an inexpensive way to ac-
quire data. Although the financial costs associated with remote
sensing can sometimes be very large—for example, it is expen-
sive to build, launch, and operate satellite remote-sensing sys-
tems, making some imagery expensive —much is freely available.
Additionally, although commercial remote-sensing systems can
appear costly, the data still provide inexpensive assessment on
a unit-area basis. More critically, however, there has been an
increasing trend to make key datasets for environmental science
research freely and openly available. For example, the complete
archive of the influential Landsat series of satellites is freely avail-
able, and recently the European Space Agency (ESA) launched a
suite of new satellites and provides the data collected for free. Re-
sources such as Google Earth Engine (GEE) also provide easy ac-
cess to vast global datasets.

Sixth and finally, not only are data more readily available, but
there has also been an increasing trend toward the provision of
data products as well as the image data themselves. This re-
duces both the need for expert knowledge of remote sensing
and image analysis and the communication gap between ex-
perts and environmental scientists, which has historically been
a concern. Environmental scientists can now easily access sci-
ence-quality data products obtained from remote sensing
(e.g., leaf area index, land use, and land cover), although expert
knowledge might still sometimes be needed.
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Remote-Sensing Platforms and Sensors

Remote-sensing systems are available as a diverse array of sen-
sors and platforms (Figure 1). Sensors can be divided into pas-
sive and active sensors, whereas platforms range from Earth
observation satellites, planes, and helicopters to unmanned
aerial vehicles (UAVs) with fixed wings and rotaries.

The most common sensor used in remote sensing is an optical
imaging system, which is similar in design and application to a
standard digital camera except that it can acquire data beyond
the visible wavelengths (i.e., infrared and thermal wavelengths)
across the electromagnetic spectrum. Materials reflect and
absorb at different wavelengths, and through these differences,
land covers (i.e., forest and canopy cover) can be identified. Op-
tical sensors vary in terms of the number of bands (and the
widths of those bands) from which image data are captured.
Multispectral sensors have a limited number of bands, whereas
hyperspectral sensors have thousands of much narrower bands
(Figure 2). Optical systems (and thermal systems) are passive
sensors, which rely on reflected sunlight or emitted thermal en-
ergy, and consequently cannot penetrate clouds or smoke, are
affected by haze from clouds, and cannot be used at night.

Active sensors include light detecting and ranging (LiDAR) and
synthetic aperture radar (SAR) systems. These sensors emit a
pulse and measure the backscatter reflecting back to the sensor.
A key advantage of such sensors is their ability to penetrate
clouds and smoke and operate at night. SAR sensors can differ-
entiate land-cover features according to their surface rough-
ness, the 3D structure of the targets, and water content.



One Earth

N B9 B10
E . ‘, 094 136
5 ) ‘ i 8
3 0.96 139
(7]

s
1] 1.36
b= o
§

s 138
®

=

=3

[

[-%

[

o

[-%

>

z

¢? CellPress

OPEN ACCESS

L

\/\

Visible Near Infrared

Shortwave Infrared

Wavelength
(micrometers)
NTS

Thermal

Figure 2. Comparison of Multispectral Sentinel 2 and Landsat 8 and Hyperspectral (Example Only) Bands

Depending on the wavelength of the sensor (e.g., X-band,
L-band, or C-band), the signal can penetrate vegetation, canopy,
and soil. Conversely, LIDAR systems emit pulse from lasers and
measure distance to a target and the reflected light. Differences
in laser return times and wavelengths can then be used for mak-
ing digital 3D representations of the target.

In recent years, as a result of developments in sensor technol-
ogy, all passive and active sensors have versions that can be
mounted on all platforms, although larger platforms such as sat-
ellites and larger planes can carry heavier payloads, allowing for
larger sensor systems that are of higher quality and accuracy.
However, because of sensor miniaturization, rarely found combi-
nations, such as SAR mounted on a UAV, are starting to be more
common and affordable.

Spaceborne sensors take consistent measurements at spe-
cific time intervals according to the time it takes for the sensor
to revisit the same location (e.g., Landsat sensors revisit the
same location on Earth every 16 days). However, many commer-
cial satellites, such as WorldView series, can be tasked for spe-
cific locations, whereby the sensor head turns to acquire data on
an angle to increase revisit time. In addition, the latest satellites
are commonly developed as part of a constellation of multiple
satellites to increase revisit time (i.e., Sentinel). Conversely,
airborne platforms have the advantage of being able to be flown
in response to specific events, such as fire, and can also fly un-
der clouds (especially UAVs), addressing this key limitation of
Earth observation satellites. Airborne platforms such as UAVs
can acquire very-high-centimeter spatial-resolution data.

Applications and Classification Methods

Within forest ecology and management, there is a diverse range
of applications for remote sensing, including the measurement of
cover, vegetation structure, vegetation chemistry and moisture,
biodiversity, and soil characteristics (Table 1). These variables
are critical for understanding forest ecosystem functions and
processes, as well as classifying forests into specific commu-
nities, ecosystems, and biomes. For forestry applications,

remote-sensing measurements can be used for producing forest
inventories for calculating the number of trees per acre, the basal
area, and the value of timber. For forest monitoring, measuring
change in these variables is important for understanding
ecosystem dynamics and anthropogenic impacts in both the
short term (i.e., fire) and long term (i.e., climate change). From
the day-to-day management perspective, monitoring forest
change is critical for determining potential risks such as fire haz-
ard due to fuel loads and overall forest health. Finally, forest
monitoring with remote-sensing approaches underpins policies
such as Reducing Greenhouse Gas Emissions from Deforesta-
tion and Forest Degradation (REDD+) and Roundtable on Sus-
tainable Palm Oil certification. Common remote-sensing appli-
cations and methods are outlined in Table 1.

There are a range of ways in which remote sensing is used to
represent different forest variables. Both optical and SAR data
are provided in a (flat) raster format (i.e., as a grid of values),
whereas LiDAR data are represented by 3D point clouds
(Figure 1). These data are then classified into either categorical
or continuous outputs. For example, land use and land cover
are categorical, whereas foliage projective cover is continuous.
However, depending on the resolution, the same variable can
be represented as continuous or categorical. For example, me-
dium-resolution Landsat can be used for classifying pixels ac-
cording to the percentage of foliage projective cover, whereas
high-resolution 5-cm data derived from a UAV can characterize
the actual canopy extent. These two perspectives for represent-
ing forest variables determine the general types of analyses con-
ducted with remote-sensing data. For continuous biophysical
measurements (e.g., the fraction of absorbed photosynthetically
active radiation and biomass), the correlation between field mea-
surements and vegetation indices, such as the normalized differ-
ence vegetation index (NDVI), is most common. However, for
categorical mapping, classification algorithms such as the
maximum likelihood classifier and machine-learning approaches
such as Random Forests are “supervised” with training data. For
high-spatial-resolution data, pixels can be aggregated first to
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Table 1. Key Forest Variables and Remote Sensing Systems Used for Mapping Them

Multispectral

Multispectral

Fine Spatial Medium to Coarse LiDAR
Domain Variables Resolution Spatial Resolution ~ Hyperspectral SAR  (Airborne)  Examples
Land use land use and e e e N one of the most
and land land cover common applications
cover for remote sensing is
land-use and land-
cover mapping
Cover vegetation and bare el e v N e vegetation indices
ground cover such as NDVI are
foliage o o v s s highly correlated with
projective cover a range of vegetation
tree density v v v v s variables and on their
own are commonly
coarse woody debris el e 4 . used as a surrogate
greenness e Ve v N for greenness or
vegetation health v v e . forest health; with
fine-resolution
multispectral data,
vegetation cover can
be characterized by
the extent of canopy
cover versus ground
cover, whereas with
coarse-resolution
remote sensing, the
percentage of cover
can be measured
within pixels
Vegetation tree height I = = = U LiDAR is particularly
structure vertical forest - - - v - good at
structure characterizing
above-ground v e v v vegetation structure
biomass and can also directly
measure tree and
leaf area index U U U < < ground height by
basal area v el 1 [ constructing 3D
individual crownsand 1~ - - - - representations of
gap size forest structure; high-
resolution UAV and
digital aerial
photography can
provide millimeter-
resolution
multispectral data
along with 2.5D
representations of
forest structure for
the identification of
individual species
Vegetation foliar chemistry < I e = = airborne
chemistry fraction of absorbed 11~ - el VN hyperspectral data
and photosynthetically can be used for
moisture active radiation estimating foliar
moisture content 7 [ 1 . - Szl sl sk
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nitrogen, on the basis
of particular
wavelengths and
specific absorption
features

(Continued on next page)
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Table 1. Continued
Multispectral Multispectral
Fine Spatial Medium to Coarse LiDAR
Domain Variables Resolution Spatial Resolution ~ Hyperspectral SAR  (Airborne)  Examples
Biodiversity individual species 7% - - - 12 high-resolution
identification multispectral data
biodiversity (e.g., - - - = s can F’e .used for
alpha and beta) identifying tree
species from both
their crown
characteristics and
texture images
Disturbance detecting forest e e 4 s - temporal trend
disturbance and analysis of spectral
recovery over long data can be
and multiple time accomplished
periods through the
fire scar mapping i i i vy s assessment of
changes in a Landsat
time-series stack for
characterizing
disturbance and
recovery
Soil soil type v 4 - . - L- and C-band SAR
moisture - - - A can penetrate the
soil properties (e.g., - - e . - e ) el 9

pH and salinity)

characterize soil
moisture

Remote sensing can be used for mapping and measuring virtually all key forest variables (e.g., tree density and basal area); this table highlights partic-
ularly common applications for specific remote-sensing systems. The double checkmarks refer to more common applications, and the single check-
marks refer to less common applications. It is important to note that there are examples in the literature for nearly all sensor and platform combinations.
For example, UAV-mounted SAR is possible, but its application so far is unusual. Although measuring foliage projective cover with hyperspectral im-
agery is technically not a problem, in many cases it would be simpler to use multispectral imagery. Finally, remote-sensing data such as spectral
indices (e.g., NDVI) can be used as inputs into physical and empirical models for characterizing a vast range of forest variables.

form objects that represent natural spatial units of relevance
(e.g., individual trees) on the basis of their similar spectral and
textural properties. Rather than being classified as pixels, these
image objects are classified according to a method known as
geographic object-based image analysis.

Where remote sensing can really demonstrate its great poten-
tial is in measuring forest variables for multiple time periods or
between multiple locations (Figure 3). Although any remote-
sensing application requires the acquisition of high-quality
cloud-free data, for applications where more than a single scene
is analyzed, this is even more important. A key decision point that
will depend on the type of analysis is whether to pre-process
data to reduce atmospheric effects (i.e., illumination and cloud
haze) (Figure 3). For certain applications, radiometric correction
is necessary for converting the raw remote-sensing data (digital
numbers) into surface reflectance, which represents the fraction
of incoming solar radiation that is reflected from Earth’s surface.

Choice of Remote-Sensing System

Because of technical and financial limitations, there is no perfect
remote-sensing system. Remote-sensing systems are typically
the result of a trade-off between spatial, temporal, and radio-
metric resolutions (Figure 4). The choice of system will depend
on this trade-off, the costs of purchasing and processing the his-
toric archives, and the archives’ availability. For example,

whereas purchasing a UAV system is relatively inexpensive,
paying to have a team fly and then process data to create high-
quality orthomosaics could mean that for many applications, pur-
chasing high-resolution WorldView 3 31-cm panchromatic satel-
lite imagery might be cheaper and produce better-quality and
more consistent results. Although SAR has great promise for
remote sensing in cloudy parts of the world (such as the tropics),
the data can be very noisy, and for the majority of applications, if a
single scene of cloud-free imagery can be acquired, the resulting
outputs can be much more informative because of the greater
amount of information provided by optical data.

Key decisions in the selection of remote-sensing data will be
determined through matching the spatial and temporal scales of
the ecological phenomenon in question with the scale of the
remote-sensing system (Figure 4). For example, UAV data can
capture millimeter-scale spatial-resolution data, but at this scale
the remote-sensing image captures tree branches, ground cover
through gaps in the canopies, individual leaves at different angles,
and shadows. For many classification algorithms, it is better to not
differentiate between the individual elements of a tree, and for
many ecological applications such precision is unnecessary.

Emerging Technologies and Approaches
The field of remote sensing is evolving rapidly, especially
because it is at the interface between engineering, computer
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Pre-processing is generally required when multiple scenes are being analyzed; however, post-classification comparisons (i.e., change detection) can also be

carried out.

science, geography, and various disciplines that utilize the tech-
nology to support forest ecology and management. The number,
range, and performance (i.e., number of bands and spatial reso-
lution) of platforms and sensors are increasing dramatically, and
more diverse players ranging from governments to private indus-
try are developing and operating remote-sensing systems.
Earth observation systems are now being launched and oper-
ated as satellite constellations rather than single satellites, as
was the case in the past. This provides greater revisit time and
also supports data-fusion products (i.e., combining multispectral
and SAR data) through overlapping image footprints and similar
spatial resolutions. Recently, the ESA launched the Sentinel sat-
ellite constellation, which includes two multispectral satellites
and two SAR satellites. The Sentinel series is expected to be
joined by another ESA Earth observation satellite in 2024, the
Fluorescence Explorer, to monitor chlorophyll fluorescence in
terrestrial vegetation. Meanwhile, China recently launched the
Gaofen (GF) series, which includes high-resolution multispectral
(GF-1 and GF-2), SAR (GF-3), and hyperspectral (GF-5) remote-
sensing satellites. At the other end of the spectrum, the private
company Planet Labs has launched over 351 satellites, and
more than 140 of these are in operation today (as of April 21,
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2020). lts satellite constellation includes over 100 small (~5 kg)
dove satellites that provide 3.7-m spatial-resolution imag-
ery daily.

Closer to the ground, UAV remote sensing has a significant
role in providing smaller organizations and research groups
with the ability to capture remote-sensing imagery at unprece-
dented spatial resolutions and at any time. The most common
sensors used are multispectral red-green-blue (RGB) and near-
infrared radiation (NIR) sensors, although there is a trend toward
miniaturizing all forms of sensor technology, including LiDAR
and hyperspectral sensors. The production costs are also
decreasing, meaning that such technologies are likely to become
much more affordable and ubiquitous. For example, the cost of
an airborne LiDAR survey can be quite prohibitive, which has
meant that its application has been limited and is rarely used
for monitoring where frequent recapture is required, even though
it is unmatched in its ability to capture the 3D structure of forest
ecosystems.

In parallel with the rapid advance in sensor technology and
platforms, the classification and processing of remote-sensing
imagery are advancing in leaps and bounds. Techniques from
computer vision, along with the use of machine-learning



One Earth

A
Region/
X _landscape
Environmental setting r =~~~ —— — 3
. -
' I
Ecoregions/ ;g .
biomes |
h
[ Vegetation cover types i (:
- 1
© ; '
%] o !
7] Forest community ' & ey
1 1
«© 1 Vegetation formation,
..‘.“. | Zonation
o , Biomass, basel area,
) Tree/shrubl/veg. £

1

'

i : Tree patches/
1 canopy gaps

U

structure

Tree/shrub :
crown, ! ﬁ
foliage |
species :
'
1

Leaf structure
Y 4

I

a = J' Leaf orientation

Temporal scale

Figure 4. Ecological and Remote-Sensing Scales

¢? CellPress

OPEN ACCESS

B
35
Year of
funch s
30
—_
£25
=
c Revisit time
2 1da
£ y
S5
]
"
9]
=15
o 27 days
e
3 Swath width
= 10
O
290 km
5
Q 80 km
O  13km
0
0 5 10 15 200 250 300 350

Number of bands

(Left) Spatial and temporal scales of ecological phenomenon (concept adapted from Kamal et al., 2015).
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methods (including deep learning), are now being applied to
remote sensing, and we are likely to see a dramatic transforma-
tion in the algorithms being applied, especially for specific types
of applications, such feature detection. These approaches usu-
ally require high-performance computing, which is commonly
provided in the cloud. Although private networks have been
and continue to be developed, the freely available GEE platform
has had enormous uptake in the remote-sensing community and
beyond. It is a combination of image repository (it includes nearly
all freely available remote-sensing imagery and products, such
as surface reflectance and vegetation indices), high-perfor-
mance computing, and web-based mapping application. Cloud
computing has great potential for reducing remote-sensing
workflows and also the ability to process data at much larger
and even global extents. Using GEE computationally intensive
applications, such as multitemporal mosaics (i.e., creating anim-
age where pixels are based on the median annual value) and
temporal trend analyses (e.g., analyses of disturbance and re-
covery with LandTrendr), is simplified. What formerly would
have required huge computing resources, expertise, and a
team of people can now be done on a desktop with an internet
connection by a single operator.

Although processing methods and remote-sensing systems
are advancing rapidly, freely available data from Landsat, the
Moderate Resolution Imaging Spectroradiometer (MODIS), and
the new Sentinel satellites are likely to still have critical roles in
supporting forest ecology and management across the world,
especially in developing nations. Most of the world’s high-biodi-
versity and intact forests are found within the tropics in devel-
oping nations with limited budgets and technical expertise.
Moreover, additional remote-sensing technical challenges are
that, unlike temperate forests (which are often dominated by a
single species), forests in these landscapes can be highly diverse
and structurally complex and frequent cloud cover must be dealt

with. However, the future is promising, remote-sensing data are
coming down in price across the board, UAV technology is
cheaper, there is more freely available remote-sensing data
and pre-processed data products (i.e., Landsat surface reflec-
tance products), and with platforms such as GEE, there is a
reduced requirement for expensive information-technology
infrastructure. These advances are resulting in a greater democ-
ratization of remote sensing to support forest management and
conservation in parts of the world where environmental issues
are the most pressing.
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