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There are many crop yield estimation techniques which are used in countries around the
world, but the most effective is the one based on remote sensing data and technologies.
However, remote sensing data which are needed to estimate crop yield is incomplete most
of the time due to many obstacles such as climate conditions (percentage of cloud cover),
and low temporal resolution. These problems reduce the effectiveness of the known crop
yield estimation techniques and render them obsolete. There was many attempts to solve
these problems by using high temporal resolution and low spatial resolution images. How-
ever, this type of images are suitable for very large homogeneous crop fields. To compen-
sate for the lack of high spatial resolution satellite images, a new mathematical model is
created. Based on the new mathematical model an intelligent system is implemented that
includes the use of energy balance equation to improve the crop yield estimation. To verify
the results of the intelligent system, several farmers are interviewed and information about
their crops yield is collected. The comparison between the estimated crop yield and the
actual production in different fields proves the high accuracy of the intelligent system.
© 2019 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of
KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

1. Introduction

in space and time. The Food and Agriculture Organization
(FAO) [2] indicated that there is need for timeliness agricul-

Roughly one third of Earth’s land is today deployed for agricul-
tural purposes, with more than ten percent used for growing
crops and the reminder for pasture. The fast increase in pop-
ulation mean more demands are being put on agriculture
than ever before [1]. Monitoring of agricultural activities faces
special problems not common to other economic sectors [2].
Firstly, Agricultural activities follows seasonal patterns
related to the crop phenology. Secondly, crop production
depends on the physical landscape, climatic parameters,
and agricultural practices. All these factors are highly variable
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tural statistics associated with effective monitoring system.
Information is worth little if it becomes available too late.
Remote sensing can significantly contribute to providing a
timely and accurate picture of the agricultural sector, as it is
very suitable for gathering information over large areas with
high revisit frequency.

In remote sensing, multispectral and hyperspectral satel-
lite images play a major role in crop management, their abil-
ity to represent crop growth condition on the spatial and
temporal scale is remarkable. These images can describe
the crop development, photosynthetic active radiation (PAR),
biomass accumulation (Bio), leaf area index (LAI), and actual
evapotranspiration (ETa).
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Many approaches have been developed to translate remote
sensing data into crop yields, and several reviews of such
approaches exist [3-5]. Some of these approaches have faced
several problems in estimating crop yield. One of these prob-
lems is the scarcity of remote sensing data suitable for use in
crop management because of climatic conditions such as
clouds [6,7]. There were several attempts to solve this matter
by replacing the lack of data with information from high tem-
poral and low spatial resolutions images such as the method
implemented by Petitjean et al. [8].

Most of the time, climatic conditions and low temporal
resolution are the main obstacles that prevent decision mak-
ers from using remote sensing data to map crops and to esti-
mate crops yield.

There are several articles that use vegetation indices from
one date image or multi-temporal images to estimate crop
yield. Kasampalis et al. [9] in their review of the current avail-
able crop yield estimation models they concluded that the
main limitations of crop growth models are the cost of obtain-
ing the necessary input data to run the model, the lack of spa-
tial information in some cases, and the input data quality.

Haig [10] conducted a study on a satellite based NDVI to
predict crop yield at field level in India. He investigated the
relationship between NDVI calculated from satellite images
and irrigated rice yield. The results of the study also showed
that the correlation between NDVI and rice yield is weak with
R <0.52. This is due to the fact that a long period of rice
growth is covered with water which makes NDVI index an
obsolete one.

Prasad et al. [11] combined several parameters such as soil
moisture, NDVI, surface temperature, rainfall data of lowa
state in USA for over nineteen years for crop yield calculation
and prediction using piecewise linear regression method with
breakpoint. In his work, a non-linear multi-variate optimiza-
tion was utilized that minimizes discrepancy and errors in
yield prediction. The method works well for large agriculture
area with homogeneous crops.

Bastiaanssen and Ali [12] used Monteith’s model [13] to
calculate the Absorbed Photosynthetically Active Radiation
(APAR), Stanford’s model for determining the light use effi-
ciency, and Surface Energy Balance Algorithm for Land
(SEBAL) to describe the temporal and spatial variabilities in
land wetness conditions. The result of the research showed
that there were gaps between the estimated and the actual
yield of about 1075 and 1246 kg/ha for wheat and rice. This
due to lack of remote sensing data and SEBAL requirements
for detailed climate data.

In this paper, the method in [12] is modified and improved
with new techniques and models. The modifications are
essential and it concerns the energy balance model such as
using another model named Mapping EvapoTranspiration at
high Resolution with Internalized Calibration (METRIC) [14].
This model depends less on climatic measurements to com-
pute actual evapotranspiration. In addition, the Monteith
model is modified with new mathematical model.

The new crop yield estimation system deploys models,
techniques, and remote sensing data that are based on using
Landsat 7 and 8 satellite images. In addition, the system
includes the development of new mathematical model to

compensate for the absence of satellite data due to climatic
factors and low temporal resolution.

2. Data and methods

Agricultural areas in different countries around the world are
characterized by different farming practices and diversified
natural features. This diversity add to the complexity of han-
dling the problem of crop yield estimation and in turn encour-
age scientists to find one common solution that can adapt to
climate conditions and to the availability of remote sensing
data.

2.1. Study area and data type

The selected study area is located in the largest agricultural
area in Lebanon known as Bekaa valley (Fig. 1). The valley
has an area size of more than 1200 km? and the major crops
in the valley are wheat and potato. It is also important to note
that two Bowen Ratio stations are installed in the area in
order to measure different climate parameters which are nec-
essary for irrigation management and for estimating crop
yield. The use of two Bowen Ratio one in the middle of the
valley and another in the south of the valley is sufficient since
in the middle the topography and climate are almost the
same for a large area and this applies to the south part of
the valley.

Many studies showed success in crop yield estimation
when one weather station was used for a large agriculture
area with homogeneous topographic land [15].

The two Bowen Ratio stations are located in two different
areas one in an agricultural research institute while the other
is located in a field owned by a potato chips manufacturer.
The distance between both is more than 15 km. The two sta-
tions provide many valuable climate data such as net radia-
tion, wind speed and direction, temperature at different
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Fig. 1 - Study area.
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elevations, humidity, global radiation, soil heat flux, and soil
humidity. The images of Landsat 7 ETM+ and 8 are used in
this research because they are available to download free of
charge from USGS Web site [16].

In addition, they are the only free satellite images that
have a thermal infrared band with high spatial resolution
(60 m compared to 1000 m for Modis satellite). Where the long
wave infrared band is used later in computing important
parameters for crop yield estimation. Availability of Landsat
images is related to the date the crop was planted and to
the date that was harvested. Using both Landsat 7 and 8
improves the temporal resolution of image availability from
16 days to 8 days.

2.2. Monteith biomass model

Monteith model [13] is based on the photosynthetically active
radiation (PAR) (0.4-0.7 m) which is part of the short wave
solar radiation (0.3-3.0 m) that is absorbed by chlorophyll for
photosynthesis in the plants. According to [17] a value of
approximately 45-50% is generally accepted to represent the
24 h average conditions (Eq. (1)).

PAR = 0.48Kinco (1)

Photosynthetically active radiation (PAR) is thus a fraction
of the incoming solar radiation (Kie). Then a fraction of PAR
is absorbed by the plant for carbon assimilation.

Absorbed photosynthetically active radiation (APAR) in
(Wm~2) can be computed directly from PAR using the follow-
ing equation
APAR = fPAR (2)

The factor f can be estimated using Normalized Differ-
ences Vegetation Index (NDVI) as is explained in [12].

Where f = -0.161 + 1.257NDVI (3)

NDVI is the normalized difference vegetation index com-
puted as the difference between near-infrared and red spec-
trums divided by their sum. The accumulation of biomass is
according to the Monteith model proportional to accumulated
APAR.

Biog, = ¢ » (APAR(t)(t) (4)

where Bio'": in (kg/m?) is the accumulated biomass in period t,

¢ is the light use efficiency in gram per mega joules (g MJ™%).
Light use efficiency ¢ varies, if not water short, with C3 crops
[13]. This means that there is no needs to know exact crop
type. Some of the C3 crops vary between wheat, rice, oats,
alfalfa, pastures, sugar beet, and potato. This fact has an
important inference: conversion for most C3 crops can be
done with the same ¢. A more comprehensive global ecology
model for computing net production was created by Field
et al. [18] where they used the following equation for light
use efficiency e

e =T T,W (5)

where ¢ is the maximum conversion element for above
ground biomass when the environmental conditions are opti-
mal, it is equal to 0.29 g/MJ for C3 crops [19]. W is a function of
the effective fraction of the available soil moisture.

The evaporative fraction is totally influenced by soil mois-
ture inside the root zone [20]. The complete details for the cal-
culation of W are explained later in the text.

T; = 0.8 +0.02T,p — 0.0005T5,

1 1
T 1+ exp(0.2Topt — 10 — Trnon) - €XP(0.3(—Tapt — 10 + Tongn))

(6)

T; and T, are two different heat functions, T, (°C) which is
the mean air temperature in the month with maximum leaf
area index, and Tpon (°C) is the mean monthly air tempera-
ture. One can notice easily that T; depends completely on Typ;
which is in turn affected by canopy biomass. On the other
hand, T, depends on both T, and Tpon.

The above values can be obtained from remote sensing
images using very complex mathematical models or they
can be obtained directly using Bowen Ratio stations.

T,

2.3.  Enhancement and correction of the images

There are still problems when using Landsat 7 products such
as “no data” strips which are caused by Scan Line Corrector
(SLC) failure. Normally, Landsat “SLC-off” data refers to all
Landsat 7 images collected after May 31, 2003, when SLC
failed. These products have data gaps, but are still useful
and maintain the same radiometric and geometric correc-
tions as data collected prior to the SLC failure. To fix this prob-
lem, a method created by Scaramuzza et al. [21] is used to fill
gaps in one scene with data from another Landsat scene. This
method is available ENVI [22] and is applied as a preprocess-
ing step. More details about how to install and use this
method as part of ENVI environment can be found in [23].
In this method, linear transform is applied to the “filling”
image to adjust it based on the standard deviation and mean
values of each band.

The at-surface reflectance for the visible to short-wave is
corrected on a band-by-band basis following Tasumi et al.
method [24]. It works first on correcting images at sensor
(Atmospheric correction) and then at surface correction.

Top of atmosphere correction (At Satellite) works as
follow:

p'up = Mp +Qeal + Ap 7)

where p,;, = TOA reflectance, without correction for solar
angle. Mp =Band-specific multiplicative rescaling factor,
Ap = Band-specific additive rescaling factor, and Qcal = Quan-
tized and calibrated standard product pixel values (DN). The
constants Mp and Ap are extracted from the metadata file that
comes with the image. While Qcal value is extracted from the
image pixel values. To correct of the TOA for the sun angle the
following is applied
P'tp
Pth = Sin(0s.) (8)

where p,,, is the corrected TOA reflectance, 0s.= Local sun ele-
vation angle. Next step is to correct with respect to at surface
reflectance which is done as follow:

Ptb—Cp(1—tynp)
Pop = ——— 9)

Tin,bTout,b
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o CZPair C3Wp + C4
tinp = C1€Xp {Ktsin(GSE) Sin(0s.) > (10)
_ C2Pm'r CBWP + C4
Tout = C1 €XP {KtCos(O) Cos0) | (1)
Wp = 0.14e,Pyy + 2.1 (12)
- Rpes
%~ 100 (13)
es = 0.6108 * exp( (17.27 Tai ) (14)

Tair +237.3

where p,, is at-satellite reflectance for band b, and Cyis a band
b specific given constant. 7, and 7o) are narrowband trans-
mittances for incoming solar radiation and for surface
reflected shortwave radiation. K; is a unit less “clearness”
coefficient <1.0 where K;=1.0 for clean air and K;=0.5 for
extremely turbid, dusty or polluted air, Py, is air pressure
(kPa), Wp is perceptible water in the atmosphere (mm), e, is
the actual vapor pressure (kPa), e; is the saturated vapor pres-
sure (kPa), Ry, is the relative humidity in percent, and T is the
air temperature. Air pressure is calculated using a form of the
universal gas law equation as standardized by [25,26].

(15)

293 — 0.0065z\ >
P = 101.3 (T)

2.4. Using METRIC to compute evaporative fraction

The computation of the evaporative fraction is based on using
Eq. (16) which in turn depends on the energy balance Eq. (17):

AE

W =
R, — Gy

(16)

JE=R,—Go—H (17)

where W is the evaporative fraction unit less, H is the sensible
heat flux in (Wm™2), JE latent heat flux in (Wm~2), R, is the
net radiation in (Wm™2), and G, is the soil heat flux in
(Wm™2). The equation can be solved using METRIC which
was developed by Allen et al. [14]. METRIC is a sort of “hybrid”
between pure remotely sensed energy balance and weather-
based evapotranspiration methods. Where energy balance is
calculated from satellite image which delivers spatial infor-
mation that includes the available energy, and the sensible
heat fluxes for a large area.

In this research, METRIC is used as part of the intelligent
system to calculate evaporative fraction and actual evapo-
transpiration. Both are compared with the values computed
from the Bowen Ratio stations measurements. METRIC foun-
dation, principles and techniques are based on SEBAL [27,28|.
METRIC works on solving Eq. (16) by calculating each variable
separately such that net radiation is calculated based on the
following Eq. (18)

Ry=RS | —oaRS| +RL | —RL 1 —(1— Eo)RL | (18)

where R, is the net radiation in (Wm~2) where RS| is the
incoming shortwave radiation in (Wm™2), o is the surface
albedo (dimensionless), RL| is the arriving longwave radiation

in (Wm~2), RLT is the emitted longwave radiation in (Wm~™2),
and E, is the surface thermal emissivity.

b= e, BT

(19)
H is the sensible heat flux in (Wm~2), T, and T; are the air and
surface temperatures in (oC), p is the air density (kg m ) and
C, heat capacity of air (Kj kg ') are constants, and ry is the
transfer resistance (s m™*) depends on wind speed and sur-
face characteristics.

Go(0.05+0.10e°?M\Ry  (LAI > 0.5) (20)

Go = max(0.4H,0.15Rn) (LAI<O0.5) (21)

where Gy is the soil heat flux in (Wm2) and LAI is the leaf
area index unit less. For more details about the above equa-
tions one may refer to the paper of Allen et al. [29].

2.5. Creating the new mathematical model

Since the estimation of crop yield depends on few satellite
images there will be some periodic gaps between the date of
planting and harvesting. For this reason, the information
obtained from each image is used to create a mathematical
model to compensate for missing data.

Mathematical models analyze the observation from the
real world such as satellite images in order to predict unfore-
seen incidents, behavior or productivity. Here they are used to
enhance data availability and to predict missing data in a
specific information process such as biomass yield estima-
tion. The model works on interpolating missing data from
existing ones with minimum error.

Normally, nonlinear curve-fitting (data-fitting) problems
are solved using least-squares method [30]. However, the data
extracted from satellite images represent specific crop bio-
mass which is considered a complex non polynomial (NP)
type of problems. For this reason, there is a need for a more
reliable method that can solve the problem and which can
provide an optimal solution.

The objective is to fit a curve to the crop yield data using
unconstrained nonlinear optimization algorithm such as
Trust-Region Methods for Nonlinear Minimization [31].
Trust-region methods are efficient, and can solve easily ill-
conditioned problems. The basic idea is to approximate a
function F with a simpler function Q, which reasonably
reflects the behavior of function F in a neighborhood N
around the point x. This neighborhood is the trust region, a
trial step s is computed by minimizing over N
(( sMin){Q(s),s € N}). This is the trust-region sub-problem,
mathematically the Trust-Region sub-problem is typically
stated as:

Min{%sTS +S" Q such that |Ds < tp} (22)

where Q is the gradient of a given function F at the current
point x, g is the Hessian matrix (the symmetric matrix of sec-
ond derivatives), D is a diagonal scaling matrix, y is a positive
scalar, and | . || is the 2-norm.
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Fig. 2 - The new mathematical model.

After calculating the biomass data for each satellite image
by using Monteith model, the biomass data with day of the
year for each image are used in the optimization process to
create the new mathematical model.

At the end a new biomass yield equation is obtained (Eq.
(23)) which can compute the total accumulated biomass from
the plantation phase until crop maturity phase.

NewBio = i Q(x;) (23)

where NewBio is the new total estimated biomass in kg/ha, N
is the number of days, x; is the day i during the crop growth
progress, and Q(x;) is the new mathematical model which
can be created from the estimated crop yield of the available
Landsat image or any other remote sensing images. The
advantage of the new method is the ability to show the com-
plete crop growth period even with the lack of complete
remote sensing images. Fig. 2 shows in detail the steps
needed to create the mathematical model from few Landsat
images.

2.6.  The intelligent system

The decision makers, scientists, and famers need a reliable
system that can estimate crop yield accurately. The system
should be available all the time this means that no cause
whether it is natural or manmade should prevent it from pro-
viding the needed information.

The system is normally made of different components
that interact between each other to complete a specific task.
It should be able to take decision and perform specific tasks
accordingly. The following schema (Fig. 3) shows the compo-
nent of the intelligent system (IS) and the different tasks it per-
forms. The intelligent system can be considered as a first step
toward estimating the yield for all crop types. The role of each
component in the intelligent system is essential for the success
of the process. The IS starts its processes by running the
acquisition of data component, then checking the data integ-
rity and completeness.

Then another component recompenses for the missing
data using a model based on the optimization of the final

S.atellite Interview Create
Images farmers " | crop map 4’@
acquisition
Is ther; Crasaahe Estimate crop
enou ) i
. g model to fill gaps HSIng New
images? model

Estimate crop
yield using known
biomass model

Verify results using
survey data

Fig. 3 - Intelligent system for estimating crop yield.
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Table 1 — Actual ET (ET,) calculated using remote sensing and Bowen station data.

Date Location Bowen ratio Remote sensing Absolute percentage error
ET (mm) ETa (mm)

8/6/2015 Qab-Elias 7.54 6.4 15

8/6/2015 Taanayel 5.49 4.6 16

24/6/2015 Qab-Elias 8.29 6.88 17

24/6/2015 Taanayel 6.37 5.6 12

MAPE 15

solution. Finally, estimating crop yield is accomplished by
either using known or created method depending on the
availability of data.

3. Experimental results

The experiments are conducted based on data type, crop type,
and season length. In case of any gap in the needed data, the
intelligent system can be used to prove its efficiency and
robustness estimating crop yield. In this paper it is decided
to estimate potato crop yield which has two different cycles,

but majority of farmers plant potato in the end of winter
and harvest in mid-summer. The potato leafs appears almost
20 days after seeding. Because the weather in Lebanon during
winter and spring is mainly rainy and cloudy, it was very hard
to get images during the months of March (the date potato
was planted) and April. Seven images are collected between
the months of April, May, June, and July from the date of
potato sowing (20-30 days after) and near the end of the
growth stage (10-30 days before harvesting). Landsat 7 was
subject to corrections to remove no data stripes as was
explained before in data and method section. Moreover,
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Table 2 - Evaporative fraction values for the 8th of June
computed using energy balance.

Time | RnW/m2 |G W/m2 | Latent Heat Flux W/m2 | Evaporative fraction
9:00 323 18.72 220.083 0.72
10:00 725 46.08 515.380 0.76
11:00 1007 91.22 718.760 0.78
12:00 724 116.88 482.840 0.80
13:00 889 112.4 621.720 0.80
14:00 882 105.4 624.120 0.80

Table 3 — Evaporative fraction values for the 24th of June
computed using energy balance.

Time | Rn W/m2 G W/m2 Latent Heat Flux W/m2 | Evaporative fraction
9 681 21.82 467.78 0.71

10 597 33.52 415.48 0.74

11 735 52.28 517.57 0.76

12 1093 66.32 778.40 0.76

13 1055 64.5 749.57 0.76

14 1071 55.3 767.73 0.76

at-surface reflectance is calculated by applying atmospheric
correction to the at-satellite and at-surface reflectance. Potato
map of Bekaa valley for spring 2015 is created using the
method in [32].

3.1.  Evaporative fraction calculation

Evaporative fraction and actual evapotranspiration (Eta) maps
are created using METRIC model as explained in the method
section. The maps covers seven days in April, May, June and
July.

The values of the evaporative fraction is less than 1 except
in few cases when net radiation is very large compared to
sensible and soil heat fluxes (R, > H and R, > Go) or when
H is zero because air and surface temperature are equal or
the difference is negligible.

To validate the accuracy of METRIC model, some recorded
climatic data from two Bowen Ratio stations are used to eval-
uate actual evapotranspiration and evaporative fraction esti-
mated maps. Fig. 4a-f show the satellite images, the actual
evapotranspiration maps and evaporative maps for a large
area in Bekaa valley in the 8th and 24th of June 2015.

The following data (Table 1) shows the actual evapotran-
spiration values obtained from the Bowen Ratio stations

Potato above ground biomass
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Days

100
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Fig. 5 - Potato above ground biomass progress graph.

(actual values) and the predicted values from METRIC model.
The accuracy is computed based on the Mean Absolute Per-
centage Error (MAPE) [33].

Table 2 shows the computed evaporative fraction Wvalues
for the local time between 9:00 and 14:00 on the 8th of June
2015. The value of the predicted W =0.74 computed by
METRIC model and compared with the computed one from
Bowen Ratio station at time 11:00 shows that the absolute per-
centage error is 5%.

The estimated evaporative fraction results for day 24 of
June 2015 are also verified. The following data collected by
Bowen Ratio station (Table 3) shows the different parameter
values used by the energy balance equation. The value of
the evaporative fraction W computed from data provided by
the Bowen Ratio station (highlighted row in Table 3) is com-
pared with the value of W computed by METRIC model
(value = 0.7). The result indicates that the absolute percentage
error is 8%.

The results are promising ones and it proves that W com-
puted by METRIC model is of high accuracy and can be used to
solve crop yield estimation problem.

3.2.  Estimating potato crop yield

To estimate potato yield several Landsat 7 and 8 images are
collected. However, the number of images and their temporal
coverages are not sufficient because a biomass model
requires information about the complete crop growth stage.
The problem can be solved if daily satellite images such as
Modis are obtained, however the extracted information would
be useless due to the coarse spatial resolution of this satellite
(from 250m to 1000 m) especially thermal long infrared
image. So the solution is to create a mathematical model that
can help in compensate for missing data.

After creating the potato map, some statistical informa-
tion related to biomass are extracted from the seven

Table 4 - Estimated potato biomass production for different periods of time in spring 2015.

10- March 5-Apr 7-May 8-Jun 16-Jun 24-Jun 10-July 26-July
Days 1 25 57 79 87 95 111 127
Mean 0 14 67.0 252.4 275.1 320.0 435.7 80.5
Min 0 0.5 30.0 103.8 210.0 275.0 295.4 15.3
Max 0 5.0 140.9 285.9 307.0 374.0 583.2 179.3
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Fig. 6 - Maps of (a) Selected crops in Bekaa crop (b) above ground crop biomass and (c) Potato tuber.

processed satellite images. Table 4 lists the minimum, maxi-
mum and average biomass production kg/pixel (225 m?) col-
lected from these images for several potato fields. Although
the plantation dates of spring potato is variable, but the
majority of farmers start planting in different dates of March
month especially in the first two weeks. In addition, most of
the farmers harvest potato in July. Eq. (24) is the result of fit-
ting a curve the given data in Table 4 using the Trust region
algorithm The Parametric fitting of the given data involves
finding coefficients (parameters) for one or more models that
fit to data.

2
F(Xdata) = a, exp <— (M) > + a;

C1

X exp ( ()(d(1tct12192>2> (24)

where Xdata is the day number from the beginning of the crop
season to harvesting, a;, by, ¢1, ay, by, and c, are constants

where a;=489; b;=111.1;
Cp = 28.64.

Based on the new model and Egs. (23) and (24), a new crop
yield model is obtained shown in Eqg. (25).

2
NewBio = Z:\ilal exp <— <w> > + a,
- 1

2
X exp ( (M) ) (25)
C2

Fig. 5 shows the progress of the potato biomass after about
three weeks from plantation and few weeks before the end of
the growth stage. The graph was created using the new yield
model (Eq. (25)).

In addition, a map is created using the new crop yield
method (Fig. 6a—c). They show the crop map, estimated above
ground crop biomass, and potato dry matter (for the whole
season of spring 2015). The graph was verified using real bio-
mass data collected periodically from the potato fields after a

c;=14.92; a,=283.1; b, =80.96;

Table 5 — Potato crop yield for several farmers in different areas in Bekaa valley.

Farmer # % Area (ha) Production (tons/ha) Type of potato Estimated (tons/ha) Error
1 50 30 Spunta 28.5 0.05
2 50 30 Spunta 29 0.03
3 15 35 Agria 33 0.06
4 75 40 Spunta 38 0.05
5 20 40 Spunta 38.5 0.04
6 10 44 Spunta 40.5 0.04
7 10 36 Spunta 35 0.03
8 50 38 Spunta 39 0.03
9 300 25 Agria 25 0

10 100 35 Agria 33 0.06
11 15 30 Spunta 31 0.03
12 20 35 Agria 34 0.03
13 100 25 Spunta 24 0.04
14 70 30 Agria 29 0.03
15 10 15 Spunta 14.5 0.03
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month from sowing day and every 10 days. The comparison
showed an agreement of about 96% as the graph shows.

To gain confidence in the estimated crop yield results, sev-
eral potato farmers are interviewed. Table 5 shows the real
potato yield and the estimated for several farmers (collected
from the map according to each farmer’s location). The survey
showed that the average accuracy of the estimated crop yield
is about 96%.

It is noticeable that there is agreement between the data in
the map of Fig. 6¢ (tuber is normally equal up to 80% of the
potato biomass [34]) and the data in Table 5 with respect to
having actual values greater or equal to the estimated values.
This means that the validation process is correct during the
development of the model and after completing it.

In addition, one can notice that the crop yield for some
fields is very low this may be due to error in crop mapping.

4, Conclusions

The lack of remote sensing data is no longer an obstacle for
managers and decision makers of the agriculture sector. It
is proved in this research that crop yield estimation can be
improved if reliable intelligent system exists to help in over-
coming all obstacles which faces the estimation process.
The intelligent system is able to make choices whether to
directly estimate crop yield or to precede it with a mathemat-
ical model that increases remote sensing data availability.
The mathematical model is created by using an optimizing
algorithm Trust-Region Methods for Nonlinear Minimization
that fits available data to an exponential equation. The exper-
imental results proved the accuracy and reliability of the
intelligent system in estimating the crop yield in the case
where remote sensing data is missing (worst case). The potato
crop is used to prove the success of the objective of this
research. It is planned to improve the intelligent system by
adding more components which can help in managing many
agriculture practices and tasks and that can make different
agriculture information available to decision makers.
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